Genetic variation for seed storage protein composition in rapeseed (Brassica napus) and development of near‐infrared reflectance spectroscopy calibration equations

Rapeseed protein consists mainly of the seed storage protein cruciferin and napin. Cruciferin and napin have different nutritional values and techno‐functional properties. Shifting the cruciferin/napin ratio towards either more napin or more cruciferin could allow diversified applications. The objec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant breeding 2022-06, Vol.141 (3), p.408-417
Hauptverfasser: Stolte, Nils, Vettel, Jasmin, Möllers, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 417
container_issue 3
container_start_page 408
container_title Plant breeding
container_volume 141
creator Stolte, Nils
Vettel, Jasmin
Möllers, Christian
description Rapeseed protein consists mainly of the seed storage protein cruciferin and napin. Cruciferin and napin have different nutritional values and techno‐functional properties. Shifting the cruciferin/napin ratio towards either more napin or more cruciferin could allow diversified applications. The objective of this study was to investigate the genetic variation of cruciferin and napin in modern winter rapeseed cultivars. Cruciferin and napin contents were analysed by SDS‐PAGE. Genetic variation for both protein fractions was highly significant. Heritabilities were high ranging from 74% for cruciferin to 82% for napin. Napin was positively correlated with glucosinolate (rS = .52**) and seed protein content (rS = .48**). Additional plant material with much larger trait variation was included to develop near‐infrared reflectance spectroscopical calibrations. The Near‐infrared reflectance spectroscopy (NIRS) equations showed high fractions of explained variance in cross and independent validation of around .9 for all traits, indicating that the NIRS equations can be applied in routine screening of plant material.
doi_str_mv 10.1111/pbr.13017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673294425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673294425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3327-57a441de64d91039cdcfc48f5758c7a53f6faebf02a7de37925326022b75bd0c3</originalsourceid><addsrcrecordid>eNp1kUtOxDAMhiMEEsPAghtEYgOLDnm0E7oExEtCAiFYV27qoKBOEpIOaHYcgUtwMU5CmLLFG9vR9zu2fkL2OZvxHMehjTMuGVcbZMJLWResEnKTTPJLXdRVybfJTkov7LeXakK-rtDhYDV9g2hhsN5R4yNNiB1Ng4_wjDREP6B1VPtF8MmuodxGCLjmDs8ipGQ1UAdhmY4ouI52-Ia9Dwt0A_WGOoT4_fFpnYkQsyai6VEP4DTSFHIVfdI-rKiG3rZx3ARfl-si7ZItA33Cvb88JU-XF4_n18Xt3dXN-eltoaUUqqgUlCXvcF52NWey1p02ujwxlapOtIJKmrkBbA0ToDqUqhaVFHMmRKuqtmNaTsnBODef_LrENDQvfhld_rIRcyVFXZZZMiVHI6Xz0ilf0oRoFxBXDWfNrwtNdqFZu5DZ45F9tz2u_geb-7OHUfEDQNOOkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673294425</pqid></control><display><type>article</type><title>Genetic variation for seed storage protein composition in rapeseed (Brassica napus) and development of near‐infrared reflectance spectroscopy calibration equations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Stolte, Nils ; Vettel, Jasmin ; Möllers, Christian</creator><creatorcontrib>Stolte, Nils ; Vettel, Jasmin ; Möllers, Christian</creatorcontrib><description>Rapeseed protein consists mainly of the seed storage protein cruciferin and napin. Cruciferin and napin have different nutritional values and techno‐functional properties. Shifting the cruciferin/napin ratio towards either more napin or more cruciferin could allow diversified applications. The objective of this study was to investigate the genetic variation of cruciferin and napin in modern winter rapeseed cultivars. Cruciferin and napin contents were analysed by SDS‐PAGE. Genetic variation for both protein fractions was highly significant. Heritabilities were high ranging from 74% for cruciferin to 82% for napin. Napin was positively correlated with glucosinolate (rS = .52**) and seed protein content (rS = .48**). Additional plant material with much larger trait variation was included to develop near‐infrared reflectance spectroscopical calibrations. The Near‐infrared reflectance spectroscopy (NIRS) equations showed high fractions of explained variance in cross and independent validation of around .9 for all traits, indicating that the NIRS equations can be applied in routine screening of plant material.</description><identifier>ISSN: 0179-9541</identifier><identifier>EISSN: 1439-0523</identifier><identifier>DOI: 10.1111/pbr.13017</identifier><language>eng</language><publisher>Berlin: Wiley Subscription Services, Inc</publisher><subject>Brassica ; Brassica napus ; cruciferin ; Cultivars ; Genetic analysis ; Genetic diversity ; glucosinolate ; Infrared reflection ; Infrared spectroscopy ; lignin ; Mathematical analysis ; napin ; Near infrared radiation ; Nutritive value ; protein ; Protein composition ; Proteins ; Rapeseed ; Reflectance ; Spectroscopy ; Spectrum analysis ; yield</subject><ispartof>Plant breeding, 2022-06, Vol.141 (3), p.408-417</ispartof><rights>2022 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3327-57a441de64d91039cdcfc48f5758c7a53f6faebf02a7de37925326022b75bd0c3</citedby><cites>FETCH-LOGICAL-c3327-57a441de64d91039cdcfc48f5758c7a53f6faebf02a7de37925326022b75bd0c3</cites><orcidid>0000-0003-2148-0886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbr.13017$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbr.13017$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Stolte, Nils</creatorcontrib><creatorcontrib>Vettel, Jasmin</creatorcontrib><creatorcontrib>Möllers, Christian</creatorcontrib><title>Genetic variation for seed storage protein composition in rapeseed (Brassica napus) and development of near‐infrared reflectance spectroscopy calibration equations</title><title>Plant breeding</title><description>Rapeseed protein consists mainly of the seed storage protein cruciferin and napin. Cruciferin and napin have different nutritional values and techno‐functional properties. Shifting the cruciferin/napin ratio towards either more napin or more cruciferin could allow diversified applications. The objective of this study was to investigate the genetic variation of cruciferin and napin in modern winter rapeseed cultivars. Cruciferin and napin contents were analysed by SDS‐PAGE. Genetic variation for both protein fractions was highly significant. Heritabilities were high ranging from 74% for cruciferin to 82% for napin. Napin was positively correlated with glucosinolate (rS = .52**) and seed protein content (rS = .48**). Additional plant material with much larger trait variation was included to develop near‐infrared reflectance spectroscopical calibrations. The Near‐infrared reflectance spectroscopy (NIRS) equations showed high fractions of explained variance in cross and independent validation of around .9 for all traits, indicating that the NIRS equations can be applied in routine screening of plant material.</description><subject>Brassica</subject><subject>Brassica napus</subject><subject>cruciferin</subject><subject>Cultivars</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>glucosinolate</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>lignin</subject><subject>Mathematical analysis</subject><subject>napin</subject><subject>Near infrared radiation</subject><subject>Nutritive value</subject><subject>protein</subject><subject>Protein composition</subject><subject>Proteins</subject><subject>Rapeseed</subject><subject>Reflectance</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>yield</subject><issn>0179-9541</issn><issn>1439-0523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kUtOxDAMhiMEEsPAghtEYgOLDnm0E7oExEtCAiFYV27qoKBOEpIOaHYcgUtwMU5CmLLFG9vR9zu2fkL2OZvxHMehjTMuGVcbZMJLWResEnKTTPJLXdRVybfJTkov7LeXakK-rtDhYDV9g2hhsN5R4yNNiB1Ng4_wjDREP6B1VPtF8MmuodxGCLjmDs8ipGQ1UAdhmY4ouI52-Ia9Dwt0A_WGOoT4_fFpnYkQsyai6VEP4DTSFHIVfdI-rKiG3rZx3ARfl-si7ZItA33Cvb88JU-XF4_n18Xt3dXN-eltoaUUqqgUlCXvcF52NWey1p02ujwxlapOtIJKmrkBbA0ToDqUqhaVFHMmRKuqtmNaTsnBODef_LrENDQvfhld_rIRcyVFXZZZMiVHI6Xz0ilf0oRoFxBXDWfNrwtNdqFZu5DZ45F9tz2u_geb-7OHUfEDQNOOkw</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Stolte, Nils</creator><creator>Vettel, Jasmin</creator><creator>Möllers, Christian</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-2148-0886</orcidid></search><sort><creationdate>202206</creationdate><title>Genetic variation for seed storage protein composition in rapeseed (Brassica napus) and development of near‐infrared reflectance spectroscopy calibration equations</title><author>Stolte, Nils ; Vettel, Jasmin ; Möllers, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3327-57a441de64d91039cdcfc48f5758c7a53f6faebf02a7de37925326022b75bd0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brassica</topic><topic>Brassica napus</topic><topic>cruciferin</topic><topic>Cultivars</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>glucosinolate</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>lignin</topic><topic>Mathematical analysis</topic><topic>napin</topic><topic>Near infrared radiation</topic><topic>Nutritive value</topic><topic>protein</topic><topic>Protein composition</topic><topic>Proteins</topic><topic>Rapeseed</topic><topic>Reflectance</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stolte, Nils</creatorcontrib><creatorcontrib>Vettel, Jasmin</creatorcontrib><creatorcontrib>Möllers, Christian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Plant breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stolte, Nils</au><au>Vettel, Jasmin</au><au>Möllers, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic variation for seed storage protein composition in rapeseed (Brassica napus) and development of near‐infrared reflectance spectroscopy calibration equations</atitle><jtitle>Plant breeding</jtitle><date>2022-06</date><risdate>2022</risdate><volume>141</volume><issue>3</issue><spage>408</spage><epage>417</epage><pages>408-417</pages><issn>0179-9541</issn><eissn>1439-0523</eissn><abstract>Rapeseed protein consists mainly of the seed storage protein cruciferin and napin. Cruciferin and napin have different nutritional values and techno‐functional properties. Shifting the cruciferin/napin ratio towards either more napin or more cruciferin could allow diversified applications. The objective of this study was to investigate the genetic variation of cruciferin and napin in modern winter rapeseed cultivars. Cruciferin and napin contents were analysed by SDS‐PAGE. Genetic variation for both protein fractions was highly significant. Heritabilities were high ranging from 74% for cruciferin to 82% for napin. Napin was positively correlated with glucosinolate (rS = .52**) and seed protein content (rS = .48**). Additional plant material with much larger trait variation was included to develop near‐infrared reflectance spectroscopical calibrations. The Near‐infrared reflectance spectroscopy (NIRS) equations showed high fractions of explained variance in cross and independent validation of around .9 for all traits, indicating that the NIRS equations can be applied in routine screening of plant material.</abstract><cop>Berlin</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/pbr.13017</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2148-0886</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0179-9541
ispartof Plant breeding, 2022-06, Vol.141 (3), p.408-417
issn 0179-9541
1439-0523
language eng
recordid cdi_proquest_journals_2673294425
source Wiley Online Library Journals Frontfile Complete
subjects Brassica
Brassica napus
cruciferin
Cultivars
Genetic analysis
Genetic diversity
glucosinolate
Infrared reflection
Infrared spectroscopy
lignin
Mathematical analysis
napin
Near infrared radiation
Nutritive value
protein
Protein composition
Proteins
Rapeseed
Reflectance
Spectroscopy
Spectrum analysis
yield
title Genetic variation for seed storage protein composition in rapeseed (Brassica napus) and development of near‐infrared reflectance spectroscopy calibration equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20variation%20for%20seed%20storage%20protein%20composition%20in%20rapeseed%20(Brassica%20napus)%20and%20development%20of%20near%E2%80%90infrared%20reflectance%20spectroscopy%20calibration%20equations&rft.jtitle=Plant%20breeding&rft.au=Stolte,%20Nils&rft.date=2022-06&rft.volume=141&rft.issue=3&rft.spage=408&rft.epage=417&rft.pages=408-417&rft.issn=0179-9541&rft.eissn=1439-0523&rft_id=info:doi/10.1111/pbr.13017&rft_dat=%3Cproquest_cross%3E2673294425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673294425&rft_id=info:pmid/&rfr_iscdi=true