Genetic variation for seed storage protein composition in rapeseed (Brassica napus) and development of near‐infrared reflectance spectroscopy calibration equations
Rapeseed protein consists mainly of the seed storage protein cruciferin and napin. Cruciferin and napin have different nutritional values and techno‐functional properties. Shifting the cruciferin/napin ratio towards either more napin or more cruciferin could allow diversified applications. The objec...
Gespeichert in:
Veröffentlicht in: | Plant breeding 2022-06, Vol.141 (3), p.408-417 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 417 |
---|---|
container_issue | 3 |
container_start_page | 408 |
container_title | Plant breeding |
container_volume | 141 |
creator | Stolte, Nils Vettel, Jasmin Möllers, Christian |
description | Rapeseed protein consists mainly of the seed storage protein cruciferin and napin. Cruciferin and napin have different nutritional values and techno‐functional properties. Shifting the cruciferin/napin ratio towards either more napin or more cruciferin could allow diversified applications. The objective of this study was to investigate the genetic variation of cruciferin and napin in modern winter rapeseed cultivars. Cruciferin and napin contents were analysed by SDS‐PAGE. Genetic variation for both protein fractions was highly significant. Heritabilities were high ranging from 74% for cruciferin to 82% for napin. Napin was positively correlated with glucosinolate (rS = .52**) and seed protein content (rS = .48**). Additional plant material with much larger trait variation was included to develop near‐infrared reflectance spectroscopical calibrations. The Near‐infrared reflectance spectroscopy (NIRS) equations showed high fractions of explained variance in cross and independent validation of around .9 for all traits, indicating that the NIRS equations can be applied in routine screening of plant material. |
doi_str_mv | 10.1111/pbr.13017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673294425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673294425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3327-57a441de64d91039cdcfc48f5758c7a53f6faebf02a7de37925326022b75bd0c3</originalsourceid><addsrcrecordid>eNp1kUtOxDAMhiMEEsPAghtEYgOLDnm0E7oExEtCAiFYV27qoKBOEpIOaHYcgUtwMU5CmLLFG9vR9zu2fkL2OZvxHMehjTMuGVcbZMJLWResEnKTTPJLXdRVybfJTkov7LeXakK-rtDhYDV9g2hhsN5R4yNNiB1Ng4_wjDREP6B1VPtF8MmuodxGCLjmDs8ipGQ1UAdhmY4ouI52-Ia9Dwt0A_WGOoT4_fFpnYkQsyai6VEP4DTSFHIVfdI-rKiG3rZx3ARfl-si7ZItA33Cvb88JU-XF4_n18Xt3dXN-eltoaUUqqgUlCXvcF52NWey1p02ujwxlapOtIJKmrkBbA0ToDqUqhaVFHMmRKuqtmNaTsnBODef_LrENDQvfhld_rIRcyVFXZZZMiVHI6Xz0ilf0oRoFxBXDWfNrwtNdqFZu5DZ45F9tz2u_geb-7OHUfEDQNOOkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673294425</pqid></control><display><type>article</type><title>Genetic variation for seed storage protein composition in rapeseed (Brassica napus) and development of near‐infrared reflectance spectroscopy calibration equations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Stolte, Nils ; Vettel, Jasmin ; Möllers, Christian</creator><creatorcontrib>Stolte, Nils ; Vettel, Jasmin ; Möllers, Christian</creatorcontrib><description>Rapeseed protein consists mainly of the seed storage protein cruciferin and napin. Cruciferin and napin have different nutritional values and techno‐functional properties. Shifting the cruciferin/napin ratio towards either more napin or more cruciferin could allow diversified applications. The objective of this study was to investigate the genetic variation of cruciferin and napin in modern winter rapeseed cultivars. Cruciferin and napin contents were analysed by SDS‐PAGE. Genetic variation for both protein fractions was highly significant. Heritabilities were high ranging from 74% for cruciferin to 82% for napin. Napin was positively correlated with glucosinolate (rS = .52**) and seed protein content (rS = .48**). Additional plant material with much larger trait variation was included to develop near‐infrared reflectance spectroscopical calibrations. The Near‐infrared reflectance spectroscopy (NIRS) equations showed high fractions of explained variance in cross and independent validation of around .9 for all traits, indicating that the NIRS equations can be applied in routine screening of plant material.</description><identifier>ISSN: 0179-9541</identifier><identifier>EISSN: 1439-0523</identifier><identifier>DOI: 10.1111/pbr.13017</identifier><language>eng</language><publisher>Berlin: Wiley Subscription Services, Inc</publisher><subject>Brassica ; Brassica napus ; cruciferin ; Cultivars ; Genetic analysis ; Genetic diversity ; glucosinolate ; Infrared reflection ; Infrared spectroscopy ; lignin ; Mathematical analysis ; napin ; Near infrared radiation ; Nutritive value ; protein ; Protein composition ; Proteins ; Rapeseed ; Reflectance ; Spectroscopy ; Spectrum analysis ; yield</subject><ispartof>Plant breeding, 2022-06, Vol.141 (3), p.408-417</ispartof><rights>2022 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3327-57a441de64d91039cdcfc48f5758c7a53f6faebf02a7de37925326022b75bd0c3</citedby><cites>FETCH-LOGICAL-c3327-57a441de64d91039cdcfc48f5758c7a53f6faebf02a7de37925326022b75bd0c3</cites><orcidid>0000-0003-2148-0886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbr.13017$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbr.13017$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Stolte, Nils</creatorcontrib><creatorcontrib>Vettel, Jasmin</creatorcontrib><creatorcontrib>Möllers, Christian</creatorcontrib><title>Genetic variation for seed storage protein composition in rapeseed (Brassica napus) and development of near‐infrared reflectance spectroscopy calibration equations</title><title>Plant breeding</title><description>Rapeseed protein consists mainly of the seed storage protein cruciferin and napin. Cruciferin and napin have different nutritional values and techno‐functional properties. Shifting the cruciferin/napin ratio towards either more napin or more cruciferin could allow diversified applications. The objective of this study was to investigate the genetic variation of cruciferin and napin in modern winter rapeseed cultivars. Cruciferin and napin contents were analysed by SDS‐PAGE. Genetic variation for both protein fractions was highly significant. Heritabilities were high ranging from 74% for cruciferin to 82% for napin. Napin was positively correlated with glucosinolate (rS = .52**) and seed protein content (rS = .48**). Additional plant material with much larger trait variation was included to develop near‐infrared reflectance spectroscopical calibrations. The Near‐infrared reflectance spectroscopy (NIRS) equations showed high fractions of explained variance in cross and independent validation of around .9 for all traits, indicating that the NIRS equations can be applied in routine screening of plant material.</description><subject>Brassica</subject><subject>Brassica napus</subject><subject>cruciferin</subject><subject>Cultivars</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>glucosinolate</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>lignin</subject><subject>Mathematical analysis</subject><subject>napin</subject><subject>Near infrared radiation</subject><subject>Nutritive value</subject><subject>protein</subject><subject>Protein composition</subject><subject>Proteins</subject><subject>Rapeseed</subject><subject>Reflectance</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>yield</subject><issn>0179-9541</issn><issn>1439-0523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kUtOxDAMhiMEEsPAghtEYgOLDnm0E7oExEtCAiFYV27qoKBOEpIOaHYcgUtwMU5CmLLFG9vR9zu2fkL2OZvxHMehjTMuGVcbZMJLWResEnKTTPJLXdRVybfJTkov7LeXakK-rtDhYDV9g2hhsN5R4yNNiB1Ng4_wjDREP6B1VPtF8MmuodxGCLjmDs8ipGQ1UAdhmY4ouI52-Ia9Dwt0A_WGOoT4_fFpnYkQsyai6VEP4DTSFHIVfdI-rKiG3rZx3ARfl-si7ZItA33Cvb88JU-XF4_n18Xt3dXN-eltoaUUqqgUlCXvcF52NWey1p02ujwxlapOtIJKmrkBbA0ToDqUqhaVFHMmRKuqtmNaTsnBODef_LrENDQvfhld_rIRcyVFXZZZMiVHI6Xz0ilf0oRoFxBXDWfNrwtNdqFZu5DZ45F9tz2u_geb-7OHUfEDQNOOkw</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Stolte, Nils</creator><creator>Vettel, Jasmin</creator><creator>Möllers, Christian</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-2148-0886</orcidid></search><sort><creationdate>202206</creationdate><title>Genetic variation for seed storage protein composition in rapeseed (Brassica napus) and development of near‐infrared reflectance spectroscopy calibration equations</title><author>Stolte, Nils ; Vettel, Jasmin ; Möllers, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3327-57a441de64d91039cdcfc48f5758c7a53f6faebf02a7de37925326022b75bd0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brassica</topic><topic>Brassica napus</topic><topic>cruciferin</topic><topic>Cultivars</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>glucosinolate</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>lignin</topic><topic>Mathematical analysis</topic><topic>napin</topic><topic>Near infrared radiation</topic><topic>Nutritive value</topic><topic>protein</topic><topic>Protein composition</topic><topic>Proteins</topic><topic>Rapeseed</topic><topic>Reflectance</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stolte, Nils</creatorcontrib><creatorcontrib>Vettel, Jasmin</creatorcontrib><creatorcontrib>Möllers, Christian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Plant breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stolte, Nils</au><au>Vettel, Jasmin</au><au>Möllers, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic variation for seed storage protein composition in rapeseed (Brassica napus) and development of near‐infrared reflectance spectroscopy calibration equations</atitle><jtitle>Plant breeding</jtitle><date>2022-06</date><risdate>2022</risdate><volume>141</volume><issue>3</issue><spage>408</spage><epage>417</epage><pages>408-417</pages><issn>0179-9541</issn><eissn>1439-0523</eissn><abstract>Rapeseed protein consists mainly of the seed storage protein cruciferin and napin. Cruciferin and napin have different nutritional values and techno‐functional properties. Shifting the cruciferin/napin ratio towards either more napin or more cruciferin could allow diversified applications. The objective of this study was to investigate the genetic variation of cruciferin and napin in modern winter rapeseed cultivars. Cruciferin and napin contents were analysed by SDS‐PAGE. Genetic variation for both protein fractions was highly significant. Heritabilities were high ranging from 74% for cruciferin to 82% for napin. Napin was positively correlated with glucosinolate (rS = .52**) and seed protein content (rS = .48**). Additional plant material with much larger trait variation was included to develop near‐infrared reflectance spectroscopical calibrations. The Near‐infrared reflectance spectroscopy (NIRS) equations showed high fractions of explained variance in cross and independent validation of around .9 for all traits, indicating that the NIRS equations can be applied in routine screening of plant material.</abstract><cop>Berlin</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/pbr.13017</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2148-0886</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0179-9541 |
ispartof | Plant breeding, 2022-06, Vol.141 (3), p.408-417 |
issn | 0179-9541 1439-0523 |
language | eng |
recordid | cdi_proquest_journals_2673294425 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Brassica Brassica napus cruciferin Cultivars Genetic analysis Genetic diversity glucosinolate Infrared reflection Infrared spectroscopy lignin Mathematical analysis napin Near infrared radiation Nutritive value protein Protein composition Proteins Rapeseed Reflectance Spectroscopy Spectrum analysis yield |
title | Genetic variation for seed storage protein composition in rapeseed (Brassica napus) and development of near‐infrared reflectance spectroscopy calibration equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20variation%20for%20seed%20storage%20protein%20composition%20in%20rapeseed%20(Brassica%20napus)%20and%20development%20of%20near%E2%80%90infrared%20reflectance%20spectroscopy%20calibration%20equations&rft.jtitle=Plant%20breeding&rft.au=Stolte,%20Nils&rft.date=2022-06&rft.volume=141&rft.issue=3&rft.spage=408&rft.epage=417&rft.pages=408-417&rft.issn=0179-9541&rft.eissn=1439-0523&rft_id=info:doi/10.1111/pbr.13017&rft_dat=%3Cproquest_cross%3E2673294425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673294425&rft_id=info:pmid/&rfr_iscdi=true |