Colorimetric characterization of color imaging systems using a multi‐input PSO‐BP neural network

Most commonly used camera characterization methods do not use a deep learning‐based artificial neural network approach at present. This article proposes a colorimetric characterization method for color imaging systems based on the multi‐input particle swarm optimization backpropagation neural networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Color research and application 2022-08, Vol.47 (4), p.855-865
Hauptverfasser: Liu, Lu, Xie, Xufen, Zhang, Yuncui, Cao, Fan, Liang, Jing, Liao, Ningfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 865
container_issue 4
container_start_page 855
container_title Color research and application
container_volume 47
creator Liu, Lu
Xie, Xufen
Zhang, Yuncui
Cao, Fan
Liang, Jing
Liao, Ningfang
description Most commonly used camera characterization methods do not use a deep learning‐based artificial neural network approach at present. This article proposes a colorimetric characterization method for color imaging systems based on the multi‐input particle swarm optimization backpropagation neural network. Combined with a particle swarm optimization algorithm for global search and a 19‐input vector, this method not only overcomes the effects of local extrema on the multi‐input backpropagation neural network, but also improves the accuracy of the common input backpropagation neural network. Images of a ColorChecker SG chart were collected using a Canon EOS 1000D camera for experimental verification, and the color differences were used to evaluate the characterization results. The results show that the color differences of the multi‐input particle swarm optimization backpropagation neural network (structure: 19‐7‐3) model are substantially better than those of the multi‐input backpropagation neural network (structure: 19‐7‐3) and common input backpropagation neural network (structure: 3‐4‐3) models. Its performance is close to that of the weighted nonlinear regression model. The multi‐input particle swarm optimization backpropagation neural network is hence an effective method for colorimetric characterization with good prediction accuracy.
doi_str_mv 10.1002/col.22772
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673285814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673285814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-b8192bf3c68caba9913326c4e3894c58a3896129a298f1eb9a8bccb2c151e9023</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqWw4AaWWLFIa4-bxF5CxJ9UqZWAdeQYp7gkcbEdVWXFETgjJ8ElbFm9GenNjOZD6JySCSUEpso2E4A8hwM0oimQJGM5P0QjwjKaAKP5MTrxfk0ISRnPR-ilsI11ptXBGYXVq3RSBe3MhwzGdtjWWO0FbFq5Mt0K-50PuvW49_tO4rZvgvn-_DLdpg94-biI9fUSd7p3sokIW-veTtFRLRuvz_44Rs-3N0_FfTJf3D0UV_NEgcghqTgVUNVMZVzJSgpBGYNMzTTjYqZSLiMzCkKC4DXVlZC8UqoCRVOqBQE2RhfD3o2z7732oVzb3nXxZAlZzoCnnM6idTlYylnvna7LTQxAul1JSbkPsYwvl78hRnc6uFvT6N3_Ylks5sPEDxn2df0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673285814</pqid></control><display><type>article</type><title>Colorimetric characterization of color imaging systems using a multi‐input PSO‐BP neural network</title><source>Wiley Journals</source><creator>Liu, Lu ; Xie, Xufen ; Zhang, Yuncui ; Cao, Fan ; Liang, Jing ; Liao, Ningfang</creator><creatorcontrib>Liu, Lu ; Xie, Xufen ; Zhang, Yuncui ; Cao, Fan ; Liang, Jing ; Liao, Ningfang</creatorcontrib><description>Most commonly used camera characterization methods do not use a deep learning‐based artificial neural network approach at present. This article proposes a colorimetric characterization method for color imaging systems based on the multi‐input particle swarm optimization backpropagation neural network. Combined with a particle swarm optimization algorithm for global search and a 19‐input vector, this method not only overcomes the effects of local extrema on the multi‐input backpropagation neural network, but also improves the accuracy of the common input backpropagation neural network. Images of a ColorChecker SG chart were collected using a Canon EOS 1000D camera for experimental verification, and the color differences were used to evaluate the characterization results. The results show that the color differences of the multi‐input particle swarm optimization backpropagation neural network (structure: 19‐7‐3) model are substantially better than those of the multi‐input backpropagation neural network (structure: 19‐7‐3) and common input backpropagation neural network (structure: 3‐4‐3) models. Its performance is close to that of the weighted nonlinear regression model. The multi‐input particle swarm optimization backpropagation neural network is hence an effective method for colorimetric characterization with good prediction accuracy.</description><identifier>ISSN: 0361-2317</identifier><identifier>EISSN: 1520-6378</identifier><identifier>DOI: 10.1002/col.22772</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Artificial neural networks ; Back propagation ; Back propagation networks ; BPNN ; Cameras ; Color ; color imaging system ; colorimetric characterization ; Colorimetry ; Machine learning ; Neural networks ; Optimization ; Particle swarm optimization ; Regression models</subject><ispartof>Color research and application, 2022-08, Vol.47 (4), p.855-865</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-b8192bf3c68caba9913326c4e3894c58a3896129a298f1eb9a8bccb2c151e9023</citedby><cites>FETCH-LOGICAL-c2972-b8192bf3c68caba9913326c4e3894c58a3896129a298f1eb9a8bccb2c151e9023</cites><orcidid>0000-0003-2624-9966 ; 0000-0003-3627-6896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcol.22772$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcol.22772$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Xie, Xufen</creatorcontrib><creatorcontrib>Zhang, Yuncui</creatorcontrib><creatorcontrib>Cao, Fan</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Liao, Ningfang</creatorcontrib><title>Colorimetric characterization of color imaging systems using a multi‐input PSO‐BP neural network</title><title>Color research and application</title><description>Most commonly used camera characterization methods do not use a deep learning‐based artificial neural network approach at present. This article proposes a colorimetric characterization method for color imaging systems based on the multi‐input particle swarm optimization backpropagation neural network. Combined with a particle swarm optimization algorithm for global search and a 19‐input vector, this method not only overcomes the effects of local extrema on the multi‐input backpropagation neural network, but also improves the accuracy of the common input backpropagation neural network. Images of a ColorChecker SG chart were collected using a Canon EOS 1000D camera for experimental verification, and the color differences were used to evaluate the characterization results. The results show that the color differences of the multi‐input particle swarm optimization backpropagation neural network (structure: 19‐7‐3) model are substantially better than those of the multi‐input backpropagation neural network (structure: 19‐7‐3) and common input backpropagation neural network (structure: 3‐4‐3) models. Its performance is close to that of the weighted nonlinear regression model. The multi‐input particle swarm optimization backpropagation neural network is hence an effective method for colorimetric characterization with good prediction accuracy.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>BPNN</subject><subject>Cameras</subject><subject>Color</subject><subject>color imaging system</subject><subject>colorimetric characterization</subject><subject>Colorimetry</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Regression models</subject><issn>0361-2317</issn><issn>1520-6378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqWw4AaWWLFIa4-bxF5CxJ9UqZWAdeQYp7gkcbEdVWXFETgjJ8ElbFm9GenNjOZD6JySCSUEpso2E4A8hwM0oimQJGM5P0QjwjKaAKP5MTrxfk0ISRnPR-ilsI11ptXBGYXVq3RSBe3MhwzGdtjWWO0FbFq5Mt0K-50PuvW49_tO4rZvgvn-_DLdpg94-biI9fUSd7p3sokIW-veTtFRLRuvz_44Rs-3N0_FfTJf3D0UV_NEgcghqTgVUNVMZVzJSgpBGYNMzTTjYqZSLiMzCkKC4DXVlZC8UqoCRVOqBQE2RhfD3o2z7732oVzb3nXxZAlZzoCnnM6idTlYylnvna7LTQxAul1JSbkPsYwvl78hRnc6uFvT6N3_Ylks5sPEDxn2df0</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Liu, Lu</creator><creator>Xie, Xufen</creator><creator>Zhang, Yuncui</creator><creator>Cao, Fan</creator><creator>Liang, Jing</creator><creator>Liao, Ningfang</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2624-9966</orcidid><orcidid>https://orcid.org/0000-0003-3627-6896</orcidid></search><sort><creationdate>202208</creationdate><title>Colorimetric characterization of color imaging systems using a multi‐input PSO‐BP neural network</title><author>Liu, Lu ; Xie, Xufen ; Zhang, Yuncui ; Cao, Fan ; Liang, Jing ; Liao, Ningfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-b8192bf3c68caba9913326c4e3894c58a3896129a298f1eb9a8bccb2c151e9023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>BPNN</topic><topic>Cameras</topic><topic>Color</topic><topic>color imaging system</topic><topic>colorimetric characterization</topic><topic>Colorimetry</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Xie, Xufen</creatorcontrib><creatorcontrib>Zhang, Yuncui</creatorcontrib><creatorcontrib>Cao, Fan</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Liao, Ningfang</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Color research and application</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lu</au><au>Xie, Xufen</au><au>Zhang, Yuncui</au><au>Cao, Fan</au><au>Liang, Jing</au><au>Liao, Ningfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colorimetric characterization of color imaging systems using a multi‐input PSO‐BP neural network</atitle><jtitle>Color research and application</jtitle><date>2022-08</date><risdate>2022</risdate><volume>47</volume><issue>4</issue><spage>855</spage><epage>865</epage><pages>855-865</pages><issn>0361-2317</issn><eissn>1520-6378</eissn><abstract>Most commonly used camera characterization methods do not use a deep learning‐based artificial neural network approach at present. This article proposes a colorimetric characterization method for color imaging systems based on the multi‐input particle swarm optimization backpropagation neural network. Combined with a particle swarm optimization algorithm for global search and a 19‐input vector, this method not only overcomes the effects of local extrema on the multi‐input backpropagation neural network, but also improves the accuracy of the common input backpropagation neural network. Images of a ColorChecker SG chart were collected using a Canon EOS 1000D camera for experimental verification, and the color differences were used to evaluate the characterization results. The results show that the color differences of the multi‐input particle swarm optimization backpropagation neural network (structure: 19‐7‐3) model are substantially better than those of the multi‐input backpropagation neural network (structure: 19‐7‐3) and common input backpropagation neural network (structure: 3‐4‐3) models. Its performance is close to that of the weighted nonlinear regression model. The multi‐input particle swarm optimization backpropagation neural network is hence an effective method for colorimetric characterization with good prediction accuracy.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/col.22772</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2624-9966</orcidid><orcidid>https://orcid.org/0000-0003-3627-6896</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-2317
ispartof Color research and application, 2022-08, Vol.47 (4), p.855-865
issn 0361-2317
1520-6378
language eng
recordid cdi_proquest_journals_2673285814
source Wiley Journals
subjects Algorithms
Artificial neural networks
Back propagation
Back propagation networks
BPNN
Cameras
Color
color imaging system
colorimetric characterization
Colorimetry
Machine learning
Neural networks
Optimization
Particle swarm optimization
Regression models
title Colorimetric characterization of color imaging systems using a multi‐input PSO‐BP neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colorimetric%20characterization%20of%20color%20imaging%20systems%20using%20a%20multi%E2%80%90input%20PSO%E2%80%90BP%20neural%20network&rft.jtitle=Color%20research%20and%20application&rft.au=Liu,%20Lu&rft.date=2022-08&rft.volume=47&rft.issue=4&rft.spage=855&rft.epage=865&rft.pages=855-865&rft.issn=0361-2317&rft.eissn=1520-6378&rft_id=info:doi/10.1002/col.22772&rft_dat=%3Cproquest_cross%3E2673285814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673285814&rft_id=info:pmid/&rfr_iscdi=true