Colorimetric characterization of color imaging systems using a multi‐input PSO‐BP neural network
Most commonly used camera characterization methods do not use a deep learning‐based artificial neural network approach at present. This article proposes a colorimetric characterization method for color imaging systems based on the multi‐input particle swarm optimization backpropagation neural networ...
Gespeichert in:
Veröffentlicht in: | Color research and application 2022-08, Vol.47 (4), p.855-865 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 865 |
---|---|
container_issue | 4 |
container_start_page | 855 |
container_title | Color research and application |
container_volume | 47 |
creator | Liu, Lu Xie, Xufen Zhang, Yuncui Cao, Fan Liang, Jing Liao, Ningfang |
description | Most commonly used camera characterization methods do not use a deep learning‐based artificial neural network approach at present. This article proposes a colorimetric characterization method for color imaging systems based on the multi‐input particle swarm optimization backpropagation neural network. Combined with a particle swarm optimization algorithm for global search and a 19‐input vector, this method not only overcomes the effects of local extrema on the multi‐input backpropagation neural network, but also improves the accuracy of the common input backpropagation neural network. Images of a ColorChecker SG chart were collected using a Canon EOS 1000D camera for experimental verification, and the color differences were used to evaluate the characterization results. The results show that the color differences of the multi‐input particle swarm optimization backpropagation neural network (structure: 19‐7‐3) model are substantially better than those of the multi‐input backpropagation neural network (structure: 19‐7‐3) and common input backpropagation neural network (structure: 3‐4‐3) models. Its performance is close to that of the weighted nonlinear regression model. The multi‐input particle swarm optimization backpropagation neural network is hence an effective method for colorimetric characterization with good prediction accuracy. |
doi_str_mv | 10.1002/col.22772 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673285814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673285814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-b8192bf3c68caba9913326c4e3894c58a3896129a298f1eb9a8bccb2c151e9023</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqWw4AaWWLFIa4-bxF5CxJ9UqZWAdeQYp7gkcbEdVWXFETgjJ8ElbFm9GenNjOZD6JySCSUEpso2E4A8hwM0oimQJGM5P0QjwjKaAKP5MTrxfk0ISRnPR-ilsI11ptXBGYXVq3RSBe3MhwzGdtjWWO0FbFq5Mt0K-50PuvW49_tO4rZvgvn-_DLdpg94-biI9fUSd7p3sokIW-veTtFRLRuvz_44Rs-3N0_FfTJf3D0UV_NEgcghqTgVUNVMZVzJSgpBGYNMzTTjYqZSLiMzCkKC4DXVlZC8UqoCRVOqBQE2RhfD3o2z7732oVzb3nXxZAlZzoCnnM6idTlYylnvna7LTQxAul1JSbkPsYwvl78hRnc6uFvT6N3_Ylks5sPEDxn2df0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673285814</pqid></control><display><type>article</type><title>Colorimetric characterization of color imaging systems using a multi‐input PSO‐BP neural network</title><source>Wiley Journals</source><creator>Liu, Lu ; Xie, Xufen ; Zhang, Yuncui ; Cao, Fan ; Liang, Jing ; Liao, Ningfang</creator><creatorcontrib>Liu, Lu ; Xie, Xufen ; Zhang, Yuncui ; Cao, Fan ; Liang, Jing ; Liao, Ningfang</creatorcontrib><description>Most commonly used camera characterization methods do not use a deep learning‐based artificial neural network approach at present. This article proposes a colorimetric characterization method for color imaging systems based on the multi‐input particle swarm optimization backpropagation neural network. Combined with a particle swarm optimization algorithm for global search and a 19‐input vector, this method not only overcomes the effects of local extrema on the multi‐input backpropagation neural network, but also improves the accuracy of the common input backpropagation neural network. Images of a ColorChecker SG chart were collected using a Canon EOS 1000D camera for experimental verification, and the color differences were used to evaluate the characterization results. The results show that the color differences of the multi‐input particle swarm optimization backpropagation neural network (structure: 19‐7‐3) model are substantially better than those of the multi‐input backpropagation neural network (structure: 19‐7‐3) and common input backpropagation neural network (structure: 3‐4‐3) models. Its performance is close to that of the weighted nonlinear regression model. The multi‐input particle swarm optimization backpropagation neural network is hence an effective method for colorimetric characterization with good prediction accuracy.</description><identifier>ISSN: 0361-2317</identifier><identifier>EISSN: 1520-6378</identifier><identifier>DOI: 10.1002/col.22772</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Artificial neural networks ; Back propagation ; Back propagation networks ; BPNN ; Cameras ; Color ; color imaging system ; colorimetric characterization ; Colorimetry ; Machine learning ; Neural networks ; Optimization ; Particle swarm optimization ; Regression models</subject><ispartof>Color research and application, 2022-08, Vol.47 (4), p.855-865</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-b8192bf3c68caba9913326c4e3894c58a3896129a298f1eb9a8bccb2c151e9023</citedby><cites>FETCH-LOGICAL-c2972-b8192bf3c68caba9913326c4e3894c58a3896129a298f1eb9a8bccb2c151e9023</cites><orcidid>0000-0003-2624-9966 ; 0000-0003-3627-6896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcol.22772$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcol.22772$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Xie, Xufen</creatorcontrib><creatorcontrib>Zhang, Yuncui</creatorcontrib><creatorcontrib>Cao, Fan</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Liao, Ningfang</creatorcontrib><title>Colorimetric characterization of color imaging systems using a multi‐input PSO‐BP neural network</title><title>Color research and application</title><description>Most commonly used camera characterization methods do not use a deep learning‐based artificial neural network approach at present. This article proposes a colorimetric characterization method for color imaging systems based on the multi‐input particle swarm optimization backpropagation neural network. Combined with a particle swarm optimization algorithm for global search and a 19‐input vector, this method not only overcomes the effects of local extrema on the multi‐input backpropagation neural network, but also improves the accuracy of the common input backpropagation neural network. Images of a ColorChecker SG chart were collected using a Canon EOS 1000D camera for experimental verification, and the color differences were used to evaluate the characterization results. The results show that the color differences of the multi‐input particle swarm optimization backpropagation neural network (structure: 19‐7‐3) model are substantially better than those of the multi‐input backpropagation neural network (structure: 19‐7‐3) and common input backpropagation neural network (structure: 3‐4‐3) models. Its performance is close to that of the weighted nonlinear regression model. The multi‐input particle swarm optimization backpropagation neural network is hence an effective method for colorimetric characterization with good prediction accuracy.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>BPNN</subject><subject>Cameras</subject><subject>Color</subject><subject>color imaging system</subject><subject>colorimetric characterization</subject><subject>Colorimetry</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Regression models</subject><issn>0361-2317</issn><issn>1520-6378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqWw4AaWWLFIa4-bxF5CxJ9UqZWAdeQYp7gkcbEdVWXFETgjJ8ElbFm9GenNjOZD6JySCSUEpso2E4A8hwM0oimQJGM5P0QjwjKaAKP5MTrxfk0ISRnPR-ilsI11ptXBGYXVq3RSBe3MhwzGdtjWWO0FbFq5Mt0K-50PuvW49_tO4rZvgvn-_DLdpg94-biI9fUSd7p3sokIW-veTtFRLRuvz_44Rs-3N0_FfTJf3D0UV_NEgcghqTgVUNVMZVzJSgpBGYNMzTTjYqZSLiMzCkKC4DXVlZC8UqoCRVOqBQE2RhfD3o2z7732oVzb3nXxZAlZzoCnnM6idTlYylnvna7LTQxAul1JSbkPsYwvl78hRnc6uFvT6N3_Ylks5sPEDxn2df0</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Liu, Lu</creator><creator>Xie, Xufen</creator><creator>Zhang, Yuncui</creator><creator>Cao, Fan</creator><creator>Liang, Jing</creator><creator>Liao, Ningfang</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2624-9966</orcidid><orcidid>https://orcid.org/0000-0003-3627-6896</orcidid></search><sort><creationdate>202208</creationdate><title>Colorimetric characterization of color imaging systems using a multi‐input PSO‐BP neural network</title><author>Liu, Lu ; Xie, Xufen ; Zhang, Yuncui ; Cao, Fan ; Liang, Jing ; Liao, Ningfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-b8192bf3c68caba9913326c4e3894c58a3896129a298f1eb9a8bccb2c151e9023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>BPNN</topic><topic>Cameras</topic><topic>Color</topic><topic>color imaging system</topic><topic>colorimetric characterization</topic><topic>Colorimetry</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Xie, Xufen</creatorcontrib><creatorcontrib>Zhang, Yuncui</creatorcontrib><creatorcontrib>Cao, Fan</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Liao, Ningfang</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Color research and application</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lu</au><au>Xie, Xufen</au><au>Zhang, Yuncui</au><au>Cao, Fan</au><au>Liang, Jing</au><au>Liao, Ningfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colorimetric characterization of color imaging systems using a multi‐input PSO‐BP neural network</atitle><jtitle>Color research and application</jtitle><date>2022-08</date><risdate>2022</risdate><volume>47</volume><issue>4</issue><spage>855</spage><epage>865</epage><pages>855-865</pages><issn>0361-2317</issn><eissn>1520-6378</eissn><abstract>Most commonly used camera characterization methods do not use a deep learning‐based artificial neural network approach at present. This article proposes a colorimetric characterization method for color imaging systems based on the multi‐input particle swarm optimization backpropagation neural network. Combined with a particle swarm optimization algorithm for global search and a 19‐input vector, this method not only overcomes the effects of local extrema on the multi‐input backpropagation neural network, but also improves the accuracy of the common input backpropagation neural network. Images of a ColorChecker SG chart were collected using a Canon EOS 1000D camera for experimental verification, and the color differences were used to evaluate the characterization results. The results show that the color differences of the multi‐input particle swarm optimization backpropagation neural network (structure: 19‐7‐3) model are substantially better than those of the multi‐input backpropagation neural network (structure: 19‐7‐3) and common input backpropagation neural network (structure: 3‐4‐3) models. Its performance is close to that of the weighted nonlinear regression model. The multi‐input particle swarm optimization backpropagation neural network is hence an effective method for colorimetric characterization with good prediction accuracy.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/col.22772</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2624-9966</orcidid><orcidid>https://orcid.org/0000-0003-3627-6896</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-2317 |
ispartof | Color research and application, 2022-08, Vol.47 (4), p.855-865 |
issn | 0361-2317 1520-6378 |
language | eng |
recordid | cdi_proquest_journals_2673285814 |
source | Wiley Journals |
subjects | Algorithms Artificial neural networks Back propagation Back propagation networks BPNN Cameras Color color imaging system colorimetric characterization Colorimetry Machine learning Neural networks Optimization Particle swarm optimization Regression models |
title | Colorimetric characterization of color imaging systems using a multi‐input PSO‐BP neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colorimetric%20characterization%20of%20color%20imaging%20systems%20using%20a%20multi%E2%80%90input%20PSO%E2%80%90BP%20neural%20network&rft.jtitle=Color%20research%20and%20application&rft.au=Liu,%20Lu&rft.date=2022-08&rft.volume=47&rft.issue=4&rft.spage=855&rft.epage=865&rft.pages=855-865&rft.issn=0361-2317&rft.eissn=1520-6378&rft_id=info:doi/10.1002/col.22772&rft_dat=%3Cproquest_cross%3E2673285814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673285814&rft_id=info:pmid/&rfr_iscdi=true |