Kinetic theory of granular particles immersed in a molecular gas

The transport coefficients of a dilute gas of inelastic hard spheres immersed in a gas of elastic hard spheres (molecular gas) are determined. We assume that the number density of the granular gas is much smaller than that of the surrounding molecular gas, so that the latter is not affected by the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2022-07, Vol.943, Article A9
Hauptverfasser: Gómez González, Rubén, Garzó, Vicente
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 943
creator Gómez González, Rubén
Garzó, Vicente
description The transport coefficients of a dilute gas of inelastic hard spheres immersed in a gas of elastic hard spheres (molecular gas) are determined. We assume that the number density of the granular gas is much smaller than that of the surrounding molecular gas, so that the latter is not affected by the presence of the granular particles. In this situation, the molecular gas may be treated as a thermostat (or bath) of elastic hard spheres at a fixed temperature. The Boltzmann kinetic equation is the starting point of the present work. The first step is to characterise the reference state in the perturbation scheme, namely the homogeneous state. Theoretical results for the granular temperature and kurtosis obtained in the homogeneous steady state are compared against Monte Carlo simulations showing a good agreement. Then, the Chapman–Enskog method is employed to solve the Boltzmann equation to first order in spatial gradients. In dimensionless form, the Navier–Stokes–Fourier transport coefficients of the granular gas are given in terms of the mass ratio $m/m_g$ ($m$ and $m_g$ being the masses of a granular and a gas particle, respectively), the (reduced) bath temperature and the coefficient of restitution. Interestingly, previous results derived from a suspension model based on an effective fluid–solid interaction force are recovered in the Brownian limit ($m/m_g \to \infty$). Finally, as an application of the theory, a linear stability analysis of the homogeneous steady state is performed showing that this state is always linearly stable.
doi_str_mv 10.1017/jfm.2022.410
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673283380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2022_410</cupid><sourcerecordid>2673283380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-d70cb17cbc38180907560a5a54c60d092424351d7c5e223ade9eb538932c5a7b3</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EEqWw4wMssSVh_IqTHajiJSqxgbXlOJOQKo9iJ4v-PS6txIbVSDPn3pEOIdcMUgZM323qPuXAeSoZnJAFk1mR6EyqU7KAuE4Y43BOLkLYADABhV6Q-7d2wKl1dPrC0e_oWNPG22HurKdb6-Olw0DbvkcfsKLtQC3txw7dL9HYcEnOatsFvDrOJfl8evxYvSTr9-fX1cM6cULClFQaXMm0K53IWQ4FaJWBVVZJl0EFBZdcCsUq7RRyLmyFBZZK5IXgTlldiiW5OfRu_fg9Y5jMZpz9EF8anmnBcyFyiNTtgXJ-DMFjbba-7a3fGQZm78hER2bvyERHEU-PuO1L31YN_rX-G_gBoeFndw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673283380</pqid></control><display><type>article</type><title>Kinetic theory of granular particles immersed in a molecular gas</title><source>Cambridge University Press Journals Complete</source><creator>Gómez González, Rubén ; Garzó, Vicente</creator><creatorcontrib>Gómez González, Rubén ; Garzó, Vicente</creatorcontrib><description>The transport coefficients of a dilute gas of inelastic hard spheres immersed in a gas of elastic hard spheres (molecular gas) are determined. We assume that the number density of the granular gas is much smaller than that of the surrounding molecular gas, so that the latter is not affected by the presence of the granular particles. In this situation, the molecular gas may be treated as a thermostat (or bath) of elastic hard spheres at a fixed temperature. The Boltzmann kinetic equation is the starting point of the present work. The first step is to characterise the reference state in the perturbation scheme, namely the homogeneous state. Theoretical results for the granular temperature and kurtosis obtained in the homogeneous steady state are compared against Monte Carlo simulations showing a good agreement. Then, the Chapman–Enskog method is employed to solve the Boltzmann equation to first order in spatial gradients. In dimensionless form, the Navier–Stokes–Fourier transport coefficients of the granular gas are given in terms of the mass ratio $m/m_g$ ($m$ and $m_g$ being the masses of a granular and a gas particle, respectively), the (reduced) bath temperature and the coefficient of restitution. Interestingly, previous results derived from a suspension model based on an effective fluid–solid interaction force are recovered in the Brownian limit ($m/m_g \to \infty$). Finally, as an application of the theory, a linear stability analysis of the homogeneous steady state is performed showing that this state is always linearly stable.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2022.410</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Agreements ; Boltzmann transport equation ; Coefficients ; Gases ; JFM Papers ; Kinetic equations ; Kinetic theory ; Kurtosis ; Molecular gases ; Monte Carlo simulation ; Perturbation ; Rheology ; Simulation ; Spheres ; Stability analysis ; Statistical methods ; Steady state ; Temperature ; Transport ; Transport properties</subject><ispartof>Journal of fluid mechanics, 2022-07, Vol.943, Article A9</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press.</rights><rights>The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-d70cb17cbc38180907560a5a54c60d092424351d7c5e223ade9eb538932c5a7b3</citedby><cites>FETCH-LOGICAL-c340t-d70cb17cbc38180907560a5a54c60d092424351d7c5e223ade9eb538932c5a7b3</cites><orcidid>0000-0001-6531-9328 ; 0000-0002-5906-5031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112022004104/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>Gómez González, Rubén</creatorcontrib><creatorcontrib>Garzó, Vicente</creatorcontrib><title>Kinetic theory of granular particles immersed in a molecular gas</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The transport coefficients of a dilute gas of inelastic hard spheres immersed in a gas of elastic hard spheres (molecular gas) are determined. We assume that the number density of the granular gas is much smaller than that of the surrounding molecular gas, so that the latter is not affected by the presence of the granular particles. In this situation, the molecular gas may be treated as a thermostat (or bath) of elastic hard spheres at a fixed temperature. The Boltzmann kinetic equation is the starting point of the present work. The first step is to characterise the reference state in the perturbation scheme, namely the homogeneous state. Theoretical results for the granular temperature and kurtosis obtained in the homogeneous steady state are compared against Monte Carlo simulations showing a good agreement. Then, the Chapman–Enskog method is employed to solve the Boltzmann equation to first order in spatial gradients. In dimensionless form, the Navier–Stokes–Fourier transport coefficients of the granular gas are given in terms of the mass ratio $m/m_g$ ($m$ and $m_g$ being the masses of a granular and a gas particle, respectively), the (reduced) bath temperature and the coefficient of restitution. Interestingly, previous results derived from a suspension model based on an effective fluid–solid interaction force are recovered in the Brownian limit ($m/m_g \to \infty$). Finally, as an application of the theory, a linear stability analysis of the homogeneous steady state is performed showing that this state is always linearly stable.</description><subject>Agreements</subject><subject>Boltzmann transport equation</subject><subject>Coefficients</subject><subject>Gases</subject><subject>JFM Papers</subject><subject>Kinetic equations</subject><subject>Kinetic theory</subject><subject>Kurtosis</subject><subject>Molecular gases</subject><subject>Monte Carlo simulation</subject><subject>Perturbation</subject><subject>Rheology</subject><subject>Simulation</subject><subject>Spheres</subject><subject>Stability analysis</subject><subject>Statistical methods</subject><subject>Steady state</subject><subject>Temperature</subject><subject>Transport</subject><subject>Transport properties</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkMtOwzAQRS0EEqWw4wMssSVh_IqTHajiJSqxgbXlOJOQKo9iJ4v-PS6txIbVSDPn3pEOIdcMUgZM323qPuXAeSoZnJAFk1mR6EyqU7KAuE4Y43BOLkLYADABhV6Q-7d2wKl1dPrC0e_oWNPG22HurKdb6-Olw0DbvkcfsKLtQC3txw7dL9HYcEnOatsFvDrOJfl8evxYvSTr9-fX1cM6cULClFQaXMm0K53IWQ4FaJWBVVZJl0EFBZdcCsUq7RRyLmyFBZZK5IXgTlldiiW5OfRu_fg9Y5jMZpz9EF8anmnBcyFyiNTtgXJ-DMFjbba-7a3fGQZm78hER2bvyERHEU-PuO1L31YN_rX-G_gBoeFndw</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Gómez González, Rubén</creator><creator>Garzó, Vicente</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-6531-9328</orcidid><orcidid>https://orcid.org/0000-0002-5906-5031</orcidid></search><sort><creationdate>20220725</creationdate><title>Kinetic theory of granular particles immersed in a molecular gas</title><author>Gómez González, Rubén ; Garzó, Vicente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-d70cb17cbc38180907560a5a54c60d092424351d7c5e223ade9eb538932c5a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agreements</topic><topic>Boltzmann transport equation</topic><topic>Coefficients</topic><topic>Gases</topic><topic>JFM Papers</topic><topic>Kinetic equations</topic><topic>Kinetic theory</topic><topic>Kurtosis</topic><topic>Molecular gases</topic><topic>Monte Carlo simulation</topic><topic>Perturbation</topic><topic>Rheology</topic><topic>Simulation</topic><topic>Spheres</topic><topic>Stability analysis</topic><topic>Statistical methods</topic><topic>Steady state</topic><topic>Temperature</topic><topic>Transport</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez González, Rubén</creatorcontrib><creatorcontrib>Garzó, Vicente</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez González, Rubén</au><au>Garzó, Vicente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic theory of granular particles immersed in a molecular gas</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2022-07-25</date><risdate>2022</risdate><volume>943</volume><artnum>A9</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The transport coefficients of a dilute gas of inelastic hard spheres immersed in a gas of elastic hard spheres (molecular gas) are determined. We assume that the number density of the granular gas is much smaller than that of the surrounding molecular gas, so that the latter is not affected by the presence of the granular particles. In this situation, the molecular gas may be treated as a thermostat (or bath) of elastic hard spheres at a fixed temperature. The Boltzmann kinetic equation is the starting point of the present work. The first step is to characterise the reference state in the perturbation scheme, namely the homogeneous state. Theoretical results for the granular temperature and kurtosis obtained in the homogeneous steady state are compared against Monte Carlo simulations showing a good agreement. Then, the Chapman–Enskog method is employed to solve the Boltzmann equation to first order in spatial gradients. In dimensionless form, the Navier–Stokes–Fourier transport coefficients of the granular gas are given in terms of the mass ratio $m/m_g$ ($m$ and $m_g$ being the masses of a granular and a gas particle, respectively), the (reduced) bath temperature and the coefficient of restitution. Interestingly, previous results derived from a suspension model based on an effective fluid–solid interaction force are recovered in the Brownian limit ($m/m_g \to \infty$). Finally, as an application of the theory, a linear stability analysis of the homogeneous steady state is performed showing that this state is always linearly stable.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2022.410</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-6531-9328</orcidid><orcidid>https://orcid.org/0000-0002-5906-5031</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2022-07, Vol.943, Article A9
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2673283380
source Cambridge University Press Journals Complete
subjects Agreements
Boltzmann transport equation
Coefficients
Gases
JFM Papers
Kinetic equations
Kinetic theory
Kurtosis
Molecular gases
Monte Carlo simulation
Perturbation
Rheology
Simulation
Spheres
Stability analysis
Statistical methods
Steady state
Temperature
Transport
Transport properties
title Kinetic theory of granular particles immersed in a molecular gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20theory%20of%20granular%20particles%20immersed%20in%20a%20molecular%20gas&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=G%C3%B3mez%20Gonz%C3%A1lez,%20Rub%C3%A9n&rft.date=2022-07-25&rft.volume=943&rft.artnum=A9&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2022.410&rft_dat=%3Cproquest_cross%3E2673283380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673283380&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2022_410&rfr_iscdi=true