Monolayer tungsten disulfide in photonic environment: Angle-resolved weak and strong light-matter coupling

Light-matter interactions in two-dimensional transition metal dichalcogenides (TMDs) are sensitive to the surrounding dielectric environment. Depending on the interacting strength, weak and strong exciton-photon coupling effects can occur when the exciton energy is resonant with the one of photon. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2022-06, Vol.15 (6), p.5619-5625
Hauptverfasser: Zhang, Xuewen, Wu, Lishu, Wang, Xu, He, Silin, Hu, Hanwei, Shi, Guangchao, Zhang, Xingwang, Shang, Jingzhi, Yu, Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5625
container_issue 6
container_start_page 5619
container_title Nano research
container_volume 15
creator Zhang, Xuewen
Wu, Lishu
Wang, Xu
He, Silin
Hu, Hanwei
Shi, Guangchao
Zhang, Xingwang
Shang, Jingzhi
Yu, Ting
description Light-matter interactions in two-dimensional transition metal dichalcogenides (TMDs) are sensitive to the surrounding dielectric environment. Depending on the interacting strength, weak and strong exciton-photon coupling effects can occur when the exciton energy is resonant with the one of photon. Here we report angle-resolved spectroscopic signatures of monolayer tungsten disulfide (1L-WS 2 ) in weak and strong exciton-photon coupling environments. Inherent optical response of 1L-WS 2 in the momentum space is uncovered by employing a dielectric mirror as substrate, where the energy dispersion is angle-independent while the amplitudes increase at high detection angles. When 1L-WS 2 sits on top of a dielectric layer on silicon, the resonant trapped photon weakly couples with the exciton, in which the minimum of reflection dip shifts at both sides of the crossing angle while the emitted exciton energy remains unchanged. The unusual shift of reflection dip is attributed to the presence of Fano resonance under white-light illumination. By embedding 1L-WS 2 into a dielectric microcavity, strong exciton-photon coupling results in the formation of lower and upper polariton branches with an appreciable Rabi splitting of 34 meV at room temperature, where the observed blueshift of the lower polariton branch is indicative of the enhanced polariton-polariton scattering. Our findings highlight the effect of dielectric environment on angle-resolved optical response of exciton-photon interactions in a two-dimensional semiconductor, which is helpful to develop practical TMD-based architectures for photonic and polaritonic applications.
doi_str_mv 10.1007/s12274-022-4143-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673243798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673243798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-52ddc4c74dfc6b781c9a80a86b4a24361e9b034ff343344e685277857f4933a33</originalsourceid><addsrcrecordid>eNp1kE1PAyEURYnRxFr9Ae5IXKN8dWDcNY1fSY0bXRPKMFPqFCowNf33Ykbjyrd5b3HufckB4JLga4KxuEmEUsERphRxwhkSR2BC6loiXOb49yaUn4KzlDYYV5RwOQGb5-BDrw82wjz4LmXrYePS0LeusdB5uFuHHLwz0Pq9i8Fvrc-3cO673qJoU-j3toGfVr9D7RuYckE62LtundFW51x6TRh2vfPdOThpdZ_sxc-egrf7u9fFI1q-PDwt5ktkGKkymtGmMdwI3rSmWglJTK0l1rJacU05q4itV5jxtmWcMc5tJWdUCDkTLa8Z04xNwdXYu4vhY7Apq00Yoi8vFa0EKx2iloUiI2ViSCnaVu2i2-p4UASrb6VqVKqKUvWtVImSoWMmFdZ3Nv41_x_6AtwOek4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673243798</pqid></control><display><type>article</type><title>Monolayer tungsten disulfide in photonic environment: Angle-resolved weak and strong light-matter coupling</title><source>SpringerNature Journals</source><creator>Zhang, Xuewen ; Wu, Lishu ; Wang, Xu ; He, Silin ; Hu, Hanwei ; Shi, Guangchao ; Zhang, Xingwang ; Shang, Jingzhi ; Yu, Ting</creator><creatorcontrib>Zhang, Xuewen ; Wu, Lishu ; Wang, Xu ; He, Silin ; Hu, Hanwei ; Shi, Guangchao ; Zhang, Xingwang ; Shang, Jingzhi ; Yu, Ting</creatorcontrib><description>Light-matter interactions in two-dimensional transition metal dichalcogenides (TMDs) are sensitive to the surrounding dielectric environment. Depending on the interacting strength, weak and strong exciton-photon coupling effects can occur when the exciton energy is resonant with the one of photon. Here we report angle-resolved spectroscopic signatures of monolayer tungsten disulfide (1L-WS 2 ) in weak and strong exciton-photon coupling environments. Inherent optical response of 1L-WS 2 in the momentum space is uncovered by employing a dielectric mirror as substrate, where the energy dispersion is angle-independent while the amplitudes increase at high detection angles. When 1L-WS 2 sits on top of a dielectric layer on silicon, the resonant trapped photon weakly couples with the exciton, in which the minimum of reflection dip shifts at both sides of the crossing angle while the emitted exciton energy remains unchanged. The unusual shift of reflection dip is attributed to the presence of Fano resonance under white-light illumination. By embedding 1L-WS 2 into a dielectric microcavity, strong exciton-photon coupling results in the formation of lower and upper polariton branches with an appreciable Rabi splitting of 34 meV at room temperature, where the observed blueshift of the lower polariton branch is indicative of the enhanced polariton-polariton scattering. Our findings highlight the effect of dielectric environment on angle-resolved optical response of exciton-photon interactions in a two-dimensional semiconductor, which is helpful to develop practical TMD-based architectures for photonic and polaritonic applications.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-022-4143-7</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Coupling ; Dielectric strength ; Embedding ; Energy ; Excitons ; Fano resonance ; Light ; Materials Science ; Monolayers ; Nanotechnology ; Optical properties ; Photonics ; Photons ; Polaritons ; Reflection ; Research Article ; Room temperature ; Semiconductors ; Spectrum analysis ; Substrates ; Transition metal compounds ; Tungsten ; Tungsten disulfide ; White light</subject><ispartof>Nano research, 2022-06, Vol.15 (6), p.5619-5625</ispartof><rights>Tsinghua University Press 2022</rights><rights>Tsinghua University Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-52ddc4c74dfc6b781c9a80a86b4a24361e9b034ff343344e685277857f4933a33</citedby><cites>FETCH-LOGICAL-c316t-52ddc4c74dfc6b781c9a80a86b4a24361e9b034ff343344e685277857f4933a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-022-4143-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-022-4143-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Zhang, Xuewen</creatorcontrib><creatorcontrib>Wu, Lishu</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>He, Silin</creatorcontrib><creatorcontrib>Hu, Hanwei</creatorcontrib><creatorcontrib>Shi, Guangchao</creatorcontrib><creatorcontrib>Zhang, Xingwang</creatorcontrib><creatorcontrib>Shang, Jingzhi</creatorcontrib><creatorcontrib>Yu, Ting</creatorcontrib><title>Monolayer tungsten disulfide in photonic environment: Angle-resolved weak and strong light-matter coupling</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Light-matter interactions in two-dimensional transition metal dichalcogenides (TMDs) are sensitive to the surrounding dielectric environment. Depending on the interacting strength, weak and strong exciton-photon coupling effects can occur when the exciton energy is resonant with the one of photon. Here we report angle-resolved spectroscopic signatures of monolayer tungsten disulfide (1L-WS 2 ) in weak and strong exciton-photon coupling environments. Inherent optical response of 1L-WS 2 in the momentum space is uncovered by employing a dielectric mirror as substrate, where the energy dispersion is angle-independent while the amplitudes increase at high detection angles. When 1L-WS 2 sits on top of a dielectric layer on silicon, the resonant trapped photon weakly couples with the exciton, in which the minimum of reflection dip shifts at both sides of the crossing angle while the emitted exciton energy remains unchanged. The unusual shift of reflection dip is attributed to the presence of Fano resonance under white-light illumination. By embedding 1L-WS 2 into a dielectric microcavity, strong exciton-photon coupling results in the formation of lower and upper polariton branches with an appreciable Rabi splitting of 34 meV at room temperature, where the observed blueshift of the lower polariton branch is indicative of the enhanced polariton-polariton scattering. Our findings highlight the effect of dielectric environment on angle-resolved optical response of exciton-photon interactions in a two-dimensional semiconductor, which is helpful to develop practical TMD-based architectures for photonic and polaritonic applications.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Coupling</subject><subject>Dielectric strength</subject><subject>Embedding</subject><subject>Energy</subject><subject>Excitons</subject><subject>Fano resonance</subject><subject>Light</subject><subject>Materials Science</subject><subject>Monolayers</subject><subject>Nanotechnology</subject><subject>Optical properties</subject><subject>Photonics</subject><subject>Photons</subject><subject>Polaritons</subject><subject>Reflection</subject><subject>Research Article</subject><subject>Room temperature</subject><subject>Semiconductors</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Transition metal compounds</subject><subject>Tungsten</subject><subject>Tungsten disulfide</subject><subject>White light</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1PAyEURYnRxFr9Ae5IXKN8dWDcNY1fSY0bXRPKMFPqFCowNf33Ykbjyrd5b3HufckB4JLga4KxuEmEUsERphRxwhkSR2BC6loiXOb49yaUn4KzlDYYV5RwOQGb5-BDrw82wjz4LmXrYePS0LeusdB5uFuHHLwz0Pq9i8Fvrc-3cO673qJoU-j3toGfVr9D7RuYckE62LtundFW51x6TRh2vfPdOThpdZ_sxc-egrf7u9fFI1q-PDwt5ktkGKkymtGmMdwI3rSmWglJTK0l1rJacU05q4itV5jxtmWcMc5tJWdUCDkTLa8Z04xNwdXYu4vhY7Apq00Yoi8vFa0EKx2iloUiI2ViSCnaVu2i2-p4UASrb6VqVKqKUvWtVImSoWMmFdZ3Nv41_x_6AtwOek4</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Zhang, Xuewen</creator><creator>Wu, Lishu</creator><creator>Wang, Xu</creator><creator>He, Silin</creator><creator>Hu, Hanwei</creator><creator>Shi, Guangchao</creator><creator>Zhang, Xingwang</creator><creator>Shang, Jingzhi</creator><creator>Yu, Ting</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220601</creationdate><title>Monolayer tungsten disulfide in photonic environment: Angle-resolved weak and strong light-matter coupling</title><author>Zhang, Xuewen ; Wu, Lishu ; Wang, Xu ; He, Silin ; Hu, Hanwei ; Shi, Guangchao ; Zhang, Xingwang ; Shang, Jingzhi ; Yu, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-52ddc4c74dfc6b781c9a80a86b4a24361e9b034ff343344e685277857f4933a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Coupling</topic><topic>Dielectric strength</topic><topic>Embedding</topic><topic>Energy</topic><topic>Excitons</topic><topic>Fano resonance</topic><topic>Light</topic><topic>Materials Science</topic><topic>Monolayers</topic><topic>Nanotechnology</topic><topic>Optical properties</topic><topic>Photonics</topic><topic>Photons</topic><topic>Polaritons</topic><topic>Reflection</topic><topic>Research Article</topic><topic>Room temperature</topic><topic>Semiconductors</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Transition metal compounds</topic><topic>Tungsten</topic><topic>Tungsten disulfide</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuewen</creatorcontrib><creatorcontrib>Wu, Lishu</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>He, Silin</creatorcontrib><creatorcontrib>Hu, Hanwei</creatorcontrib><creatorcontrib>Shi, Guangchao</creatorcontrib><creatorcontrib>Zhang, Xingwang</creatorcontrib><creatorcontrib>Shang, Jingzhi</creatorcontrib><creatorcontrib>Yu, Ting</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xuewen</au><au>Wu, Lishu</au><au>Wang, Xu</au><au>He, Silin</au><au>Hu, Hanwei</au><au>Shi, Guangchao</au><au>Zhang, Xingwang</au><au>Shang, Jingzhi</au><au>Yu, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolayer tungsten disulfide in photonic environment: Angle-resolved weak and strong light-matter coupling</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><spage>5619</spage><epage>5625</epage><pages>5619-5625</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Light-matter interactions in two-dimensional transition metal dichalcogenides (TMDs) are sensitive to the surrounding dielectric environment. Depending on the interacting strength, weak and strong exciton-photon coupling effects can occur when the exciton energy is resonant with the one of photon. Here we report angle-resolved spectroscopic signatures of monolayer tungsten disulfide (1L-WS 2 ) in weak and strong exciton-photon coupling environments. Inherent optical response of 1L-WS 2 in the momentum space is uncovered by employing a dielectric mirror as substrate, where the energy dispersion is angle-independent while the amplitudes increase at high detection angles. When 1L-WS 2 sits on top of a dielectric layer on silicon, the resonant trapped photon weakly couples with the exciton, in which the minimum of reflection dip shifts at both sides of the crossing angle while the emitted exciton energy remains unchanged. The unusual shift of reflection dip is attributed to the presence of Fano resonance under white-light illumination. By embedding 1L-WS 2 into a dielectric microcavity, strong exciton-photon coupling results in the formation of lower and upper polariton branches with an appreciable Rabi splitting of 34 meV at room temperature, where the observed blueshift of the lower polariton branch is indicative of the enhanced polariton-polariton scattering. Our findings highlight the effect of dielectric environment on angle-resolved optical response of exciton-photon interactions in a two-dimensional semiconductor, which is helpful to develop practical TMD-based architectures for photonic and polaritonic applications.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-022-4143-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2022-06, Vol.15 (6), p.5619-5625
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2673243798
source SpringerNature Journals
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Coupling
Dielectric strength
Embedding
Energy
Excitons
Fano resonance
Light
Materials Science
Monolayers
Nanotechnology
Optical properties
Photonics
Photons
Polaritons
Reflection
Research Article
Room temperature
Semiconductors
Spectrum analysis
Substrates
Transition metal compounds
Tungsten
Tungsten disulfide
White light
title Monolayer tungsten disulfide in photonic environment: Angle-resolved weak and strong light-matter coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T04%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolayer%20tungsten%20disulfide%20in%20photonic%20environment:%20Angle-resolved%20weak%20and%20strong%20light-matter%20coupling&rft.jtitle=Nano%20research&rft.au=Zhang,%20Xuewen&rft.date=2022-06-01&rft.volume=15&rft.issue=6&rft.spage=5619&rft.epage=5625&rft.pages=5619-5625&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-022-4143-7&rft_dat=%3Cproquest_cross%3E2673243798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673243798&rft_id=info:pmid/&rfr_iscdi=true