Machine Learning: Supervised Algorithms to Determine the Defect in High-Precision Foundry Operation

In this paper, we represent a method for machine learning to predict the defect in foundry operation. Foundry has become a driving tool to produce the part to another industry like automobile, marine, and weapon. These foundry processes mainly have two critical problems to decrease the quality assur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2022, Vol.2022 (1)
Hauptverfasser: BramahHazela, Hymavathi, J., Kumar, T. Rajasanthosh, Kavitha, S., Deepa, D., Lalar, Sachin, Karunakaran, Prabakaran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of nanomaterials
container_volume 2022
creator BramahHazela
Hymavathi, J.
Kumar, T. Rajasanthosh
Kavitha, S.
Deepa, D.
Lalar, Sachin
Karunakaran, Prabakaran
description In this paper, we represent a method for machine learning to predict the defect in foundry operation. Foundry has become a driving tool to produce the part to another industry like automobile, marine, and weapon. These foundry processes mainly have two critical problems to decrease the quality assurance. Now, we have to predict the defect to increase the quality of foundry operation. The foundry process’s failure is associated with micro shrinkage and ultimate tensile strength. We process by utilizing a machine learning classifier to predict the micro shrinkage and maximum tensile strength and describe the process, learning process, and evaluate the predataset from the foundry process to compare the accuracy and stability.
doi_str_mv 10.1155/2022/1732441
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673230564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673230564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9d9f69582a5dfc87da8aa99bdcff09ca3467131cf66ef5887aa55c495b6717f83</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs7PyDgUscmmWRm4q5Ua4WRCup6SDNJJ6VNapJR-vemtLh09d67HO6DA8A1RvcYMzYiiJARLnNCKT4BA1xUZUYx4ad_O0bn4CKEFUKUcUYGQL4K2RmrYK2Et8YuH-B7v1X-2wTVwvF66byJ3SbA6OCjispv9nDsVLq0khEaC2dm2WVvXkkTjLNw6nrb-h2cpxoRU3IJzrRYB3V1nEPwOX36mMyyev78MhnXmczzMma85brgrCKCtVpWZSsqIThftFJrxKXIaVHiHEtdFEqzqiqFYExSzhYpL3WVD8HNoXfr3VevQmxWrvc2vWxIkazkiBU0UXcHSnoXgle62XqzEX7XYNTsNTZ7jc1RY8JvD3iy1Iof8z_9C5TUcis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673230564</pqid></control><display><type>article</type><title>Machine Learning: Supervised Algorithms to Determine the Defect in High-Precision Foundry Operation</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>BramahHazela ; Hymavathi, J. ; Kumar, T. Rajasanthosh ; Kavitha, S. ; Deepa, D. ; Lalar, Sachin ; Karunakaran, Prabakaran</creator><contributor>Chelladurai, Samson Jerold Samuel ; Samson Jerold Samuel Chelladurai</contributor><creatorcontrib>BramahHazela ; Hymavathi, J. ; Kumar, T. Rajasanthosh ; Kavitha, S. ; Deepa, D. ; Lalar, Sachin ; Karunakaran, Prabakaran ; Chelladurai, Samson Jerold Samuel ; Samson Jerold Samuel Chelladurai</creatorcontrib><description>In this paper, we represent a method for machine learning to predict the defect in foundry operation. Foundry has become a driving tool to produce the part to another industry like automobile, marine, and weapon. These foundry processes mainly have two critical problems to decrease the quality assurance. Now, we have to predict the defect to increase the quality of foundry operation. The foundry process’s failure is associated with micro shrinkage and ultimate tensile strength. We process by utilizing a machine learning classifier to predict the micro shrinkage and maximum tensile strength and describe the process, learning process, and evaluate the predataset from the foundry process to compare the accuracy and stability.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2022/1732441</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Classification ; Datasets ; Defects ; Expected values ; Machine learning ; Mechanical properties ; Nanomaterials ; Quality assurance ; Shrinkage ; Tensile strength ; Ultimate tensile strength</subject><ispartof>Journal of nanomaterials, 2022, Vol.2022 (1)</ispartof><rights>Copyright © 2022 BramahHazela et al.</rights><rights>Copyright © 2022 BramahHazela et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9d9f69582a5dfc87da8aa99bdcff09ca3467131cf66ef5887aa55c495b6717f83</citedby><cites>FETCH-LOGICAL-c337t-9d9f69582a5dfc87da8aa99bdcff09ca3467131cf66ef5887aa55c495b6717f83</cites><orcidid>0000-0002-0329-9576 ; 0000-0003-0595-8552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Chelladurai, Samson Jerold Samuel</contributor><contributor>Samson Jerold Samuel Chelladurai</contributor><creatorcontrib>BramahHazela</creatorcontrib><creatorcontrib>Hymavathi, J.</creatorcontrib><creatorcontrib>Kumar, T. Rajasanthosh</creatorcontrib><creatorcontrib>Kavitha, S.</creatorcontrib><creatorcontrib>Deepa, D.</creatorcontrib><creatorcontrib>Lalar, Sachin</creatorcontrib><creatorcontrib>Karunakaran, Prabakaran</creatorcontrib><title>Machine Learning: Supervised Algorithms to Determine the Defect in High-Precision Foundry Operation</title><title>Journal of nanomaterials</title><description>In this paper, we represent a method for machine learning to predict the defect in foundry operation. Foundry has become a driving tool to produce the part to another industry like automobile, marine, and weapon. These foundry processes mainly have two critical problems to decrease the quality assurance. Now, we have to predict the defect to increase the quality of foundry operation. The foundry process’s failure is associated with micro shrinkage and ultimate tensile strength. We process by utilizing a machine learning classifier to predict the micro shrinkage and maximum tensile strength and describe the process, learning process, and evaluate the predataset from the foundry process to compare the accuracy and stability.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Datasets</subject><subject>Defects</subject><subject>Expected values</subject><subject>Machine learning</subject><subject>Mechanical properties</subject><subject>Nanomaterials</subject><subject>Quality assurance</subject><subject>Shrinkage</subject><subject>Tensile strength</subject><subject>Ultimate tensile strength</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMFKAzEURYMoWKs7PyDgUscmmWRm4q5Ua4WRCup6SDNJJ6VNapJR-vemtLh09d67HO6DA8A1RvcYMzYiiJARLnNCKT4BA1xUZUYx4ad_O0bn4CKEFUKUcUYGQL4K2RmrYK2Et8YuH-B7v1X-2wTVwvF66byJ3SbA6OCjispv9nDsVLq0khEaC2dm2WVvXkkTjLNw6nrb-h2cpxoRU3IJzrRYB3V1nEPwOX36mMyyev78MhnXmczzMma85brgrCKCtVpWZSsqIThftFJrxKXIaVHiHEtdFEqzqiqFYExSzhYpL3WVD8HNoXfr3VevQmxWrvc2vWxIkazkiBU0UXcHSnoXgle62XqzEX7XYNTsNTZ7jc1RY8JvD3iy1Iof8z_9C5TUcis</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>BramahHazela</creator><creator>Hymavathi, J.</creator><creator>Kumar, T. Rajasanthosh</creator><creator>Kavitha, S.</creator><creator>Deepa, D.</creator><creator>Lalar, Sachin</creator><creator>Karunakaran, Prabakaran</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0329-9576</orcidid><orcidid>https://orcid.org/0000-0003-0595-8552</orcidid></search><sort><creationdate>2022</creationdate><title>Machine Learning: Supervised Algorithms to Determine the Defect in High-Precision Foundry Operation</title><author>BramahHazela ; Hymavathi, J. ; Kumar, T. Rajasanthosh ; Kavitha, S. ; Deepa, D. ; Lalar, Sachin ; Karunakaran, Prabakaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9d9f69582a5dfc87da8aa99bdcff09ca3467131cf66ef5887aa55c495b6717f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Datasets</topic><topic>Defects</topic><topic>Expected values</topic><topic>Machine learning</topic><topic>Mechanical properties</topic><topic>Nanomaterials</topic><topic>Quality assurance</topic><topic>Shrinkage</topic><topic>Tensile strength</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BramahHazela</creatorcontrib><creatorcontrib>Hymavathi, J.</creatorcontrib><creatorcontrib>Kumar, T. Rajasanthosh</creatorcontrib><creatorcontrib>Kavitha, S.</creatorcontrib><creatorcontrib>Deepa, D.</creatorcontrib><creatorcontrib>Lalar, Sachin</creatorcontrib><creatorcontrib>Karunakaran, Prabakaran</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BramahHazela</au><au>Hymavathi, J.</au><au>Kumar, T. Rajasanthosh</au><au>Kavitha, S.</au><au>Deepa, D.</au><au>Lalar, Sachin</au><au>Karunakaran, Prabakaran</au><au>Chelladurai, Samson Jerold Samuel</au><au>Samson Jerold Samuel Chelladurai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning: Supervised Algorithms to Determine the Defect in High-Precision Foundry Operation</atitle><jtitle>Journal of nanomaterials</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>In this paper, we represent a method for machine learning to predict the defect in foundry operation. Foundry has become a driving tool to produce the part to another industry like automobile, marine, and weapon. These foundry processes mainly have two critical problems to decrease the quality assurance. Now, we have to predict the defect to increase the quality of foundry operation. The foundry process’s failure is associated with micro shrinkage and ultimate tensile strength. We process by utilizing a machine learning classifier to predict the micro shrinkage and maximum tensile strength and describe the process, learning process, and evaluate the predataset from the foundry process to compare the accuracy and stability.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/1732441</doi><orcidid>https://orcid.org/0000-0002-0329-9576</orcidid><orcidid>https://orcid.org/0000-0003-0595-8552</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-4110
ispartof Journal of nanomaterials, 2022, Vol.2022 (1)
issn 1687-4110
1687-4129
language eng
recordid cdi_proquest_journals_2673230564
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Classification
Datasets
Defects
Expected values
Machine learning
Mechanical properties
Nanomaterials
Quality assurance
Shrinkage
Tensile strength
Ultimate tensile strength
title Machine Learning: Supervised Algorithms to Determine the Defect in High-Precision Foundry Operation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning:%20Supervised%20Algorithms%20to%20Determine%20the%20Defect%20in%20High-Precision%20Foundry%20Operation&rft.jtitle=Journal%20of%20nanomaterials&rft.au=BramahHazela&rft.date=2022&rft.volume=2022&rft.issue=1&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2022/1732441&rft_dat=%3Cproquest_cross%3E2673230564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673230564&rft_id=info:pmid/&rfr_iscdi=true