Machine Learning: Supervised Algorithms to Determine the Defect in High-Precision Foundry Operation
In this paper, we represent a method for machine learning to predict the defect in foundry operation. Foundry has become a driving tool to produce the part to another industry like automobile, marine, and weapon. These foundry processes mainly have two critical problems to decrease the quality assur...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2022, Vol.2022 (1) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of nanomaterials |
container_volume | 2022 |
creator | BramahHazela Hymavathi, J. Kumar, T. Rajasanthosh Kavitha, S. Deepa, D. Lalar, Sachin Karunakaran, Prabakaran |
description | In this paper, we represent a method for machine learning to predict the defect in foundry operation. Foundry has become a driving tool to produce the part to another industry like automobile, marine, and weapon. These foundry processes mainly have two critical problems to decrease the quality assurance. Now, we have to predict the defect to increase the quality of foundry operation. The foundry process’s failure is associated with micro shrinkage and ultimate tensile strength. We process by utilizing a machine learning classifier to predict the micro shrinkage and maximum tensile strength and describe the process, learning process, and evaluate the predataset from the foundry process to compare the accuracy and stability. |
doi_str_mv | 10.1155/2022/1732441 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673230564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673230564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9d9f69582a5dfc87da8aa99bdcff09ca3467131cf66ef5887aa55c495b6717f83</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs7PyDgUscmmWRm4q5Ua4WRCup6SDNJJ6VNapJR-vemtLh09d67HO6DA8A1RvcYMzYiiJARLnNCKT4BA1xUZUYx4ad_O0bn4CKEFUKUcUYGQL4K2RmrYK2Et8YuH-B7v1X-2wTVwvF66byJ3SbA6OCjispv9nDsVLq0khEaC2dm2WVvXkkTjLNw6nrb-h2cpxoRU3IJzrRYB3V1nEPwOX36mMyyev78MhnXmczzMma85brgrCKCtVpWZSsqIThftFJrxKXIaVHiHEtdFEqzqiqFYExSzhYpL3WVD8HNoXfr3VevQmxWrvc2vWxIkazkiBU0UXcHSnoXgle62XqzEX7XYNTsNTZ7jc1RY8JvD3iy1Iof8z_9C5TUcis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673230564</pqid></control><display><type>article</type><title>Machine Learning: Supervised Algorithms to Determine the Defect in High-Precision Foundry Operation</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>BramahHazela ; Hymavathi, J. ; Kumar, T. Rajasanthosh ; Kavitha, S. ; Deepa, D. ; Lalar, Sachin ; Karunakaran, Prabakaran</creator><contributor>Chelladurai, Samson Jerold Samuel ; Samson Jerold Samuel Chelladurai</contributor><creatorcontrib>BramahHazela ; Hymavathi, J. ; Kumar, T. Rajasanthosh ; Kavitha, S. ; Deepa, D. ; Lalar, Sachin ; Karunakaran, Prabakaran ; Chelladurai, Samson Jerold Samuel ; Samson Jerold Samuel Chelladurai</creatorcontrib><description>In this paper, we represent a method for machine learning to predict the defect in foundry operation. Foundry has become a driving tool to produce the part to another industry like automobile, marine, and weapon. These foundry processes mainly have two critical problems to decrease the quality assurance. Now, we have to predict the defect to increase the quality of foundry operation. The foundry process’s failure is associated with micro shrinkage and ultimate tensile strength. We process by utilizing a machine learning classifier to predict the micro shrinkage and maximum tensile strength and describe the process, learning process, and evaluate the predataset from the foundry process to compare the accuracy and stability.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2022/1732441</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Classification ; Datasets ; Defects ; Expected values ; Machine learning ; Mechanical properties ; Nanomaterials ; Quality assurance ; Shrinkage ; Tensile strength ; Ultimate tensile strength</subject><ispartof>Journal of nanomaterials, 2022, Vol.2022 (1)</ispartof><rights>Copyright © 2022 BramahHazela et al.</rights><rights>Copyright © 2022 BramahHazela et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9d9f69582a5dfc87da8aa99bdcff09ca3467131cf66ef5887aa55c495b6717f83</citedby><cites>FETCH-LOGICAL-c337t-9d9f69582a5dfc87da8aa99bdcff09ca3467131cf66ef5887aa55c495b6717f83</cites><orcidid>0000-0002-0329-9576 ; 0000-0003-0595-8552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Chelladurai, Samson Jerold Samuel</contributor><contributor>Samson Jerold Samuel Chelladurai</contributor><creatorcontrib>BramahHazela</creatorcontrib><creatorcontrib>Hymavathi, J.</creatorcontrib><creatorcontrib>Kumar, T. Rajasanthosh</creatorcontrib><creatorcontrib>Kavitha, S.</creatorcontrib><creatorcontrib>Deepa, D.</creatorcontrib><creatorcontrib>Lalar, Sachin</creatorcontrib><creatorcontrib>Karunakaran, Prabakaran</creatorcontrib><title>Machine Learning: Supervised Algorithms to Determine the Defect in High-Precision Foundry Operation</title><title>Journal of nanomaterials</title><description>In this paper, we represent a method for machine learning to predict the defect in foundry operation. Foundry has become a driving tool to produce the part to another industry like automobile, marine, and weapon. These foundry processes mainly have two critical problems to decrease the quality assurance. Now, we have to predict the defect to increase the quality of foundry operation. The foundry process’s failure is associated with micro shrinkage and ultimate tensile strength. We process by utilizing a machine learning classifier to predict the micro shrinkage and maximum tensile strength and describe the process, learning process, and evaluate the predataset from the foundry process to compare the accuracy and stability.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Datasets</subject><subject>Defects</subject><subject>Expected values</subject><subject>Machine learning</subject><subject>Mechanical properties</subject><subject>Nanomaterials</subject><subject>Quality assurance</subject><subject>Shrinkage</subject><subject>Tensile strength</subject><subject>Ultimate tensile strength</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMFKAzEURYMoWKs7PyDgUscmmWRm4q5Ua4WRCup6SDNJJ6VNapJR-vemtLh09d67HO6DA8A1RvcYMzYiiJARLnNCKT4BA1xUZUYx4ad_O0bn4CKEFUKUcUYGQL4K2RmrYK2Et8YuH-B7v1X-2wTVwvF66byJ3SbA6OCjispv9nDsVLq0khEaC2dm2WVvXkkTjLNw6nrb-h2cpxoRU3IJzrRYB3V1nEPwOX36mMyyev78MhnXmczzMma85brgrCKCtVpWZSsqIThftFJrxKXIaVHiHEtdFEqzqiqFYExSzhYpL3WVD8HNoXfr3VevQmxWrvc2vWxIkazkiBU0UXcHSnoXgle62XqzEX7XYNTsNTZ7jc1RY8JvD3iy1Iof8z_9C5TUcis</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>BramahHazela</creator><creator>Hymavathi, J.</creator><creator>Kumar, T. Rajasanthosh</creator><creator>Kavitha, S.</creator><creator>Deepa, D.</creator><creator>Lalar, Sachin</creator><creator>Karunakaran, Prabakaran</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0329-9576</orcidid><orcidid>https://orcid.org/0000-0003-0595-8552</orcidid></search><sort><creationdate>2022</creationdate><title>Machine Learning: Supervised Algorithms to Determine the Defect in High-Precision Foundry Operation</title><author>BramahHazela ; Hymavathi, J. ; Kumar, T. Rajasanthosh ; Kavitha, S. ; Deepa, D. ; Lalar, Sachin ; Karunakaran, Prabakaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9d9f69582a5dfc87da8aa99bdcff09ca3467131cf66ef5887aa55c495b6717f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Datasets</topic><topic>Defects</topic><topic>Expected values</topic><topic>Machine learning</topic><topic>Mechanical properties</topic><topic>Nanomaterials</topic><topic>Quality assurance</topic><topic>Shrinkage</topic><topic>Tensile strength</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BramahHazela</creatorcontrib><creatorcontrib>Hymavathi, J.</creatorcontrib><creatorcontrib>Kumar, T. Rajasanthosh</creatorcontrib><creatorcontrib>Kavitha, S.</creatorcontrib><creatorcontrib>Deepa, D.</creatorcontrib><creatorcontrib>Lalar, Sachin</creatorcontrib><creatorcontrib>Karunakaran, Prabakaran</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BramahHazela</au><au>Hymavathi, J.</au><au>Kumar, T. Rajasanthosh</au><au>Kavitha, S.</au><au>Deepa, D.</au><au>Lalar, Sachin</au><au>Karunakaran, Prabakaran</au><au>Chelladurai, Samson Jerold Samuel</au><au>Samson Jerold Samuel Chelladurai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning: Supervised Algorithms to Determine the Defect in High-Precision Foundry Operation</atitle><jtitle>Journal of nanomaterials</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>In this paper, we represent a method for machine learning to predict the defect in foundry operation. Foundry has become a driving tool to produce the part to another industry like automobile, marine, and weapon. These foundry processes mainly have two critical problems to decrease the quality assurance. Now, we have to predict the defect to increase the quality of foundry operation. The foundry process’s failure is associated with micro shrinkage and ultimate tensile strength. We process by utilizing a machine learning classifier to predict the micro shrinkage and maximum tensile strength and describe the process, learning process, and evaluate the predataset from the foundry process to compare the accuracy and stability.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/1732441</doi><orcidid>https://orcid.org/0000-0002-0329-9576</orcidid><orcidid>https://orcid.org/0000-0003-0595-8552</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-4110 |
ispartof | Journal of nanomaterials, 2022, Vol.2022 (1) |
issn | 1687-4110 1687-4129 |
language | eng |
recordid | cdi_proquest_journals_2673230564 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Classification Datasets Defects Expected values Machine learning Mechanical properties Nanomaterials Quality assurance Shrinkage Tensile strength Ultimate tensile strength |
title | Machine Learning: Supervised Algorithms to Determine the Defect in High-Precision Foundry Operation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning:%20Supervised%20Algorithms%20to%20Determine%20the%20Defect%20in%20High-Precision%20Foundry%20Operation&rft.jtitle=Journal%20of%20nanomaterials&rft.au=BramahHazela&rft.date=2022&rft.volume=2022&rft.issue=1&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2022/1732441&rft_dat=%3Cproquest_cross%3E2673230564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673230564&rft_id=info:pmid/&rfr_iscdi=true |