Implementing Fusion Technique Using Biorthogonal Dwt to Increase the Number of Minutiae in Fingerprint Images

Biometric devices identify persons based on the minutiae extracted from fingerprint images. Image quality is very important in this process. Usually, fingerprint images have low quality and in many cases they are obtained in various positions. The paper focuses on increasing minutiae detected number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2022-05, Vol.2022, p.1-13
Hauptverfasser: Enesi, Indrit, Harizaj, Miranda, Çiço, Betim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title Journal of sensors
container_volume 2022
creator Enesi, Indrit
Harizaj, Miranda
Çiço, Betim
description Biometric devices identify persons based on the minutiae extracted from fingerprint images. Image quality is very important in this process. Usually, fingerprint images have low quality and in many cases they are obtained in various positions. The paper focuses on increasing minutiae detected number by fusing two fingerprint images obtained in various positions. Biorthogonal wavelets have advantages compared to orthogonal wavelets. Fusion is performed in wavelet domain by implementing biorthogonal wavelet. Terminations and bifurcations are extracted from the original and fused images using licensed software Papillon 9.02 and manually extraction by an expert. Biorthogonal Wavelet transform is implemented in the image fusion process, yielding in the increased number of the minutiae compared to the original one. Different biorthogonal wavelets are experimented and various results are obtained. Finding the appropriate wavelet is important in the fusion process since it has a direct impact in the number of minutiae extracted. Based on the number of minutiae and MSE results, the appropriate wavelet to be used in the fusion process is defined.
doi_str_mv 10.1155/2022/3502463
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673228914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673228914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3193-5a6cce9aca1accee3b7785045553e77cdefaf7f87a9fc3ab390ecff363771b343</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqVw4wdY4gihftRxcuRViFTg0krcIsddN64au9iOKv49iVpx5LSj1bermUmSa4LvCeF8QjGlE8YxnWbsJBmRLBepoFl--qf513lyEcIG44wJxkZJW7a7LbRgo7FrNOuCcRYtQDXWfHeAlmFYPxrnY-PWzsotet5HFB0qrfIgA6DYAPro2ho8chq9G9tFIwEZi2b9LfidNzaispVrCJfJmZbbAFfHOU6Ws5fF01s6_3wtnx7mqWKkYCmXmVJQSCWJ7AWwWoic4ynnnIEQagVaaqFzIQutmKxZgUFpzfpMgtRsysbJzeHvzrs-RojVxnW-dx8qmglGaV6Qgbo7UMq7EDzoqvfaSv9TEVwNhVZDodWx0B6_PeCNsSu5N__Tv8aIdr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673228914</pqid></control><display><type>article</type><title>Implementing Fusion Technique Using Biorthogonal Dwt to Increase the Number of Minutiae in Fingerprint Images</title><source>Wiley-Blackwell Open Access Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Enesi, Indrit ; Harizaj, Miranda ; Çiço, Betim</creator><contributor>Wen, He ; He Wen</contributor><creatorcontrib>Enesi, Indrit ; Harizaj, Miranda ; Çiço, Betim ; Wen, He ; He Wen</creatorcontrib><description>Biometric devices identify persons based on the minutiae extracted from fingerprint images. Image quality is very important in this process. Usually, fingerprint images have low quality and in many cases they are obtained in various positions. The paper focuses on increasing minutiae detected number by fusing two fingerprint images obtained in various positions. Biorthogonal wavelets have advantages compared to orthogonal wavelets. Fusion is performed in wavelet domain by implementing biorthogonal wavelet. Terminations and bifurcations are extracted from the original and fused images using licensed software Papillon 9.02 and manually extraction by an expert. Biorthogonal Wavelet transform is implemented in the image fusion process, yielding in the increased number of the minutiae compared to the original one. Different biorthogonal wavelets are experimented and various results are obtained. Finding the appropriate wavelet is important in the fusion process since it has a direct impact in the number of minutiae extracted. Based on the number of minutiae and MSE results, the appropriate wavelet to be used in the fusion process is defined.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2022/3502463</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Bifurcations ; Computer vision ; Decomposition ; Fingerprints ; Image processing ; Image quality ; Registration ; Symmetry ; Wavelet transforms</subject><ispartof>Journal of sensors, 2022-05, Vol.2022, p.1-13</ispartof><rights>Copyright © 2022 Indrit Enesi et al.</rights><rights>Copyright © 2022 Indrit Enesi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3193-5a6cce9aca1accee3b7785045553e77cdefaf7f87a9fc3ab390ecff363771b343</citedby><cites>FETCH-LOGICAL-c3193-5a6cce9aca1accee3b7785045553e77cdefaf7f87a9fc3ab390ecff363771b343</cites><orcidid>0000-0001-9078-6147 ; 0000-0001-6107-7288 ; 0000-0002-2695-2726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Wen, He</contributor><contributor>He Wen</contributor><creatorcontrib>Enesi, Indrit</creatorcontrib><creatorcontrib>Harizaj, Miranda</creatorcontrib><creatorcontrib>Çiço, Betim</creatorcontrib><title>Implementing Fusion Technique Using Biorthogonal Dwt to Increase the Number of Minutiae in Fingerprint Images</title><title>Journal of sensors</title><description>Biometric devices identify persons based on the minutiae extracted from fingerprint images. Image quality is very important in this process. Usually, fingerprint images have low quality and in many cases they are obtained in various positions. The paper focuses on increasing minutiae detected number by fusing two fingerprint images obtained in various positions. Biorthogonal wavelets have advantages compared to orthogonal wavelets. Fusion is performed in wavelet domain by implementing biorthogonal wavelet. Terminations and bifurcations are extracted from the original and fused images using licensed software Papillon 9.02 and manually extraction by an expert. Biorthogonal Wavelet transform is implemented in the image fusion process, yielding in the increased number of the minutiae compared to the original one. Different biorthogonal wavelets are experimented and various results are obtained. Finding the appropriate wavelet is important in the fusion process since it has a direct impact in the number of minutiae extracted. Based on the number of minutiae and MSE results, the appropriate wavelet to be used in the fusion process is defined.</description><subject>Bifurcations</subject><subject>Computer vision</subject><subject>Decomposition</subject><subject>Fingerprints</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Registration</subject><subject>Symmetry</subject><subject>Wavelet transforms</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEtPwzAQhCMEEqVw4wdY4gihftRxcuRViFTg0krcIsddN64au9iOKv49iVpx5LSj1bermUmSa4LvCeF8QjGlE8YxnWbsJBmRLBepoFl--qf513lyEcIG44wJxkZJW7a7LbRgo7FrNOuCcRYtQDXWfHeAlmFYPxrnY-PWzsotet5HFB0qrfIgA6DYAPro2ho8chq9G9tFIwEZi2b9LfidNzaispVrCJfJmZbbAFfHOU6Ws5fF01s6_3wtnx7mqWKkYCmXmVJQSCWJ7AWwWoic4ynnnIEQagVaaqFzIQutmKxZgUFpzfpMgtRsysbJzeHvzrs-RojVxnW-dx8qmglGaV6Qgbo7UMq7EDzoqvfaSv9TEVwNhVZDodWx0B6_PeCNsSu5N__Tv8aIdr8</recordid><startdate>20220524</startdate><enddate>20220524</enddate><creator>Enesi, Indrit</creator><creator>Harizaj, Miranda</creator><creator>Çiço, Betim</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9078-6147</orcidid><orcidid>https://orcid.org/0000-0001-6107-7288</orcidid><orcidid>https://orcid.org/0000-0002-2695-2726</orcidid></search><sort><creationdate>20220524</creationdate><title>Implementing Fusion Technique Using Biorthogonal Dwt to Increase the Number of Minutiae in Fingerprint Images</title><author>Enesi, Indrit ; Harizaj, Miranda ; Çiço, Betim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3193-5a6cce9aca1accee3b7785045553e77cdefaf7f87a9fc3ab390ecff363771b343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bifurcations</topic><topic>Computer vision</topic><topic>Decomposition</topic><topic>Fingerprints</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Registration</topic><topic>Symmetry</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Enesi, Indrit</creatorcontrib><creatorcontrib>Harizaj, Miranda</creatorcontrib><creatorcontrib>Çiço, Betim</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Enesi, Indrit</au><au>Harizaj, Miranda</au><au>Çiço, Betim</au><au>Wen, He</au><au>He Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementing Fusion Technique Using Biorthogonal Dwt to Increase the Number of Minutiae in Fingerprint Images</atitle><jtitle>Journal of sensors</jtitle><date>2022-05-24</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>Biometric devices identify persons based on the minutiae extracted from fingerprint images. Image quality is very important in this process. Usually, fingerprint images have low quality and in many cases they are obtained in various positions. The paper focuses on increasing minutiae detected number by fusing two fingerprint images obtained in various positions. Biorthogonal wavelets have advantages compared to orthogonal wavelets. Fusion is performed in wavelet domain by implementing biorthogonal wavelet. Terminations and bifurcations are extracted from the original and fused images using licensed software Papillon 9.02 and manually extraction by an expert. Biorthogonal Wavelet transform is implemented in the image fusion process, yielding in the increased number of the minutiae compared to the original one. Different biorthogonal wavelets are experimented and various results are obtained. Finding the appropriate wavelet is important in the fusion process since it has a direct impact in the number of minutiae extracted. Based on the number of minutiae and MSE results, the appropriate wavelet to be used in the fusion process is defined.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/3502463</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9078-6147</orcidid><orcidid>https://orcid.org/0000-0001-6107-7288</orcidid><orcidid>https://orcid.org/0000-0002-2695-2726</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2022-05, Vol.2022, p.1-13
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_journals_2673228914
source Wiley-Blackwell Open Access Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Bifurcations
Computer vision
Decomposition
Fingerprints
Image processing
Image quality
Registration
Symmetry
Wavelet transforms
title Implementing Fusion Technique Using Biorthogonal Dwt to Increase the Number of Minutiae in Fingerprint Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementing%20Fusion%20Technique%20Using%20Biorthogonal%20Dwt%20to%20Increase%20the%20Number%20of%20Minutiae%20in%20Fingerprint%20Images&rft.jtitle=Journal%20of%20sensors&rft.au=Enesi,%20Indrit&rft.date=2022-05-24&rft.volume=2022&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2022/3502463&rft_dat=%3Cproquest_cross%3E2673228914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673228914&rft_id=info:pmid/&rfr_iscdi=true