A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm
The main focus of the present work is to offer an auto-tuning model, called cat swarm optimization (CSO), to predict rock fragmentation. This population-based method has a stochastic formation involving exploration and exploitation phases. CSO is a robust and powerful meta-heuristic algorithm inspir...
Gespeichert in:
Veröffentlicht in: | Engineering with computers 2022-06, Vol.38 (3), p.2209-2220 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2220 |
---|---|
container_issue | 3 |
container_start_page | 2209 |
container_title | Engineering with computers |
container_volume | 38 |
creator | Huang, Jiandong Asteris, Panagiotis G. Manafi Khajeh Pasha, Siavash Mohammed, Ahmed Salih Hasanipanah, Mahdi |
description | The main focus of the present work is to offer an auto-tuning model, called cat swarm optimization (CSO), to predict rock fragmentation. This population-based method has a stochastic formation involving exploration and exploitation phases. CSO is a robust and powerful meta-heuristic algorithm inspired by the behaviors of cats; it is composed of two search modes: seeking and tracing, which can be joined by mixture ratio parameter. CSO is applied to large-scale optimization problems like rock fragmentation to have good forecasting parameters in
D
80
formulas (
D
80
is a common descriptor that evaluates rock fragmentation). To evaluate the efficiency of the proposed CSO model, its obtained results were compared to those of the particle swarm optimization (PSO) algorithm. In the modeling, two forms of CSO and PSO models, including power and linear forms, were developed. The comparative results showed that CSO models outperformed the rival in terms of the task defined. The precision of the proposed models was computed using statistical evaluation criteria. Comparison results concluded that CSO-power model with the root mean square error (RMSE) of 0.847 was more computationally efficient with better predictive ability compared to CSO-linear, PSO-linear and PSO-power models with the RMSE of 1.314, 1.545 and 2.307, respectively. Furthermore, the sensitivity analysis revealed the effect of the stemming parameter upon
D
80
in comparison with other input parameters. |
doi_str_mv | 10.1007/s00366-020-01207-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672841577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672841577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3a41b8de6c2c98f4e0000dfd6210fb84ca866241221a604c72763a9b402558663</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-AU8Bz9HJo0nrbVl8wYIXPYdsmna7bpuapCz66e1uBW_OZWD-j4EfQtcUbimAuosAXEoCDAhQBoqIEzSjgmckk5KfohlQpQhIqc7RRYxbAMoBihkyC9y5PTZD8iQNXdPVuPWl2-HKB9wHVzY2HY5p43Dw9gNXwdSt65JJje_uscHWJBz3JrTY96lpm--jgs2u9qFJm_YSnVVmF93V756j98eHt-UzWb0-vSwXK2I5LRLhRtB1XjppmS3ySjgYp6xKyShU61xYk0vJBGWMGgnCKqYkN8VaAMuyUeJzdDP19sF_Di4mvfVD6MaXmknFckEzpUYXm1w2-BiDq3QfmtaEL01BH1DqCaUeUeojSi3GEJ9CcTR3tQt_1f-kfgCjWHZH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672841577</pqid></control><display><type>article</type><title>A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm</title><source>SpringerLink Journals - AutoHoldings</source><creator>Huang, Jiandong ; Asteris, Panagiotis G. ; Manafi Khajeh Pasha, Siavash ; Mohammed, Ahmed Salih ; Hasanipanah, Mahdi</creator><creatorcontrib>Huang, Jiandong ; Asteris, Panagiotis G. ; Manafi Khajeh Pasha, Siavash ; Mohammed, Ahmed Salih ; Hasanipanah, Mahdi</creatorcontrib><description>The main focus of the present work is to offer an auto-tuning model, called cat swarm optimization (CSO), to predict rock fragmentation. This population-based method has a stochastic formation involving exploration and exploitation phases. CSO is a robust and powerful meta-heuristic algorithm inspired by the behaviors of cats; it is composed of two search modes: seeking and tracing, which can be joined by mixture ratio parameter. CSO is applied to large-scale optimization problems like rock fragmentation to have good forecasting parameters in
D
80
formulas (
D
80
is a common descriptor that evaluates rock fragmentation). To evaluate the efficiency of the proposed CSO model, its obtained results were compared to those of the particle swarm optimization (PSO) algorithm. In the modeling, two forms of CSO and PSO models, including power and linear forms, were developed. The comparative results showed that CSO models outperformed the rival in terms of the task defined. The precision of the proposed models was computed using statistical evaluation criteria. Comparison results concluded that CSO-power model with the root mean square error (RMSE) of 0.847 was more computationally efficient with better predictive ability compared to CSO-linear, PSO-linear and PSO-power models with the RMSE of 1.314, 1.545 and 2.307, respectively. Furthermore, the sensitivity analysis revealed the effect of the stemming parameter upon
D
80
in comparison with other input parameters.</description><identifier>ISSN: 0177-0667</identifier><identifier>EISSN: 1435-5663</identifier><identifier>DOI: 10.1007/s00366-020-01207-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Classical Mechanics ; Computer Science ; Computer-Aided Engineering (CAD ; Control ; Fragmentation ; Heuristic methods ; Math. Applications in Chemistry ; Mathematical and Computational Engineering ; Mathematical models ; Optimization ; Original Article ; Parameter sensitivity ; Particle swarm optimization ; Power ; Root-mean-square errors ; Sensitivity analysis ; Systems Theory ; Tuning</subject><ispartof>Engineering with computers, 2022-06, Vol.38 (3), p.2209-2220</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3a41b8de6c2c98f4e0000dfd6210fb84ca866241221a604c72763a9b402558663</citedby><cites>FETCH-LOGICAL-c319t-3a41b8de6c2c98f4e0000dfd6210fb84ca866241221a604c72763a9b402558663</cites><orcidid>0000-0001-7582-6745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00366-020-01207-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00366-020-01207-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Huang, Jiandong</creatorcontrib><creatorcontrib>Asteris, Panagiotis G.</creatorcontrib><creatorcontrib>Manafi Khajeh Pasha, Siavash</creatorcontrib><creatorcontrib>Mohammed, Ahmed Salih</creatorcontrib><creatorcontrib>Hasanipanah, Mahdi</creatorcontrib><title>A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm</title><title>Engineering with computers</title><addtitle>Engineering with Computers</addtitle><description>The main focus of the present work is to offer an auto-tuning model, called cat swarm optimization (CSO), to predict rock fragmentation. This population-based method has a stochastic formation involving exploration and exploitation phases. CSO is a robust and powerful meta-heuristic algorithm inspired by the behaviors of cats; it is composed of two search modes: seeking and tracing, which can be joined by mixture ratio parameter. CSO is applied to large-scale optimization problems like rock fragmentation to have good forecasting parameters in
D
80
formulas (
D
80
is a common descriptor that evaluates rock fragmentation). To evaluate the efficiency of the proposed CSO model, its obtained results were compared to those of the particle swarm optimization (PSO) algorithm. In the modeling, two forms of CSO and PSO models, including power and linear forms, were developed. The comparative results showed that CSO models outperformed the rival in terms of the task defined. The precision of the proposed models was computed using statistical evaluation criteria. Comparison results concluded that CSO-power model with the root mean square error (RMSE) of 0.847 was more computationally efficient with better predictive ability compared to CSO-linear, PSO-linear and PSO-power models with the RMSE of 1.314, 1.545 and 2.307, respectively. Furthermore, the sensitivity analysis revealed the effect of the stemming parameter upon
D
80
in comparison with other input parameters.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classical Mechanics</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Fragmentation</subject><subject>Heuristic methods</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Parameter sensitivity</subject><subject>Particle swarm optimization</subject><subject>Power</subject><subject>Root-mean-square errors</subject><subject>Sensitivity analysis</subject><subject>Systems Theory</subject><subject>Tuning</subject><issn>0177-0667</issn><issn>1435-5663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAQx4MouK5-AU8Bz9HJo0nrbVl8wYIXPYdsmna7bpuapCz66e1uBW_OZWD-j4EfQtcUbimAuosAXEoCDAhQBoqIEzSjgmckk5KfohlQpQhIqc7RRYxbAMoBihkyC9y5PTZD8iQNXdPVuPWl2-HKB9wHVzY2HY5p43Dw9gNXwdSt65JJje_uscHWJBz3JrTY96lpm--jgs2u9qFJm_YSnVVmF93V756j98eHt-UzWb0-vSwXK2I5LRLhRtB1XjppmS3ySjgYp6xKyShU61xYk0vJBGWMGgnCKqYkN8VaAMuyUeJzdDP19sF_Di4mvfVD6MaXmknFckEzpUYXm1w2-BiDq3QfmtaEL01BH1DqCaUeUeojSi3GEJ9CcTR3tQt_1f-kfgCjWHZH</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Huang, Jiandong</creator><creator>Asteris, Panagiotis G.</creator><creator>Manafi Khajeh Pasha, Siavash</creator><creator>Mohammed, Ahmed Salih</creator><creator>Hasanipanah, Mahdi</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7582-6745</orcidid></search><sort><creationdate>20220601</creationdate><title>A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm</title><author>Huang, Jiandong ; Asteris, Panagiotis G. ; Manafi Khajeh Pasha, Siavash ; Mohammed, Ahmed Salih ; Hasanipanah, Mahdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3a41b8de6c2c98f4e0000dfd6210fb84ca866241221a604c72763a9b402558663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classical Mechanics</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Fragmentation</topic><topic>Heuristic methods</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Parameter sensitivity</topic><topic>Particle swarm optimization</topic><topic>Power</topic><topic>Root-mean-square errors</topic><topic>Sensitivity analysis</topic><topic>Systems Theory</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jiandong</creatorcontrib><creatorcontrib>Asteris, Panagiotis G.</creatorcontrib><creatorcontrib>Manafi Khajeh Pasha, Siavash</creatorcontrib><creatorcontrib>Mohammed, Ahmed Salih</creatorcontrib><creatorcontrib>Hasanipanah, Mahdi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering with computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jiandong</au><au>Asteris, Panagiotis G.</au><au>Manafi Khajeh Pasha, Siavash</au><au>Mohammed, Ahmed Salih</au><au>Hasanipanah, Mahdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm</atitle><jtitle>Engineering with computers</jtitle><stitle>Engineering with Computers</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>38</volume><issue>3</issue><spage>2209</spage><epage>2220</epage><pages>2209-2220</pages><issn>0177-0667</issn><eissn>1435-5663</eissn><abstract>The main focus of the present work is to offer an auto-tuning model, called cat swarm optimization (CSO), to predict rock fragmentation. This population-based method has a stochastic formation involving exploration and exploitation phases. CSO is a robust and powerful meta-heuristic algorithm inspired by the behaviors of cats; it is composed of two search modes: seeking and tracing, which can be joined by mixture ratio parameter. CSO is applied to large-scale optimization problems like rock fragmentation to have good forecasting parameters in
D
80
formulas (
D
80
is a common descriptor that evaluates rock fragmentation). To evaluate the efficiency of the proposed CSO model, its obtained results were compared to those of the particle swarm optimization (PSO) algorithm. In the modeling, two forms of CSO and PSO models, including power and linear forms, were developed. The comparative results showed that CSO models outperformed the rival in terms of the task defined. The precision of the proposed models was computed using statistical evaluation criteria. Comparison results concluded that CSO-power model with the root mean square error (RMSE) of 0.847 was more computationally efficient with better predictive ability compared to CSO-linear, PSO-linear and PSO-power models with the RMSE of 1.314, 1.545 and 2.307, respectively. Furthermore, the sensitivity analysis revealed the effect of the stemming parameter upon
D
80
in comparison with other input parameters.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00366-020-01207-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7582-6745</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-0667 |
ispartof | Engineering with computers, 2022-06, Vol.38 (3), p.2209-2220 |
issn | 0177-0667 1435-5663 |
language | eng |
recordid | cdi_proquest_journals_2672841577 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms CAE) and Design Calculus of Variations and Optimal Control Optimization Classical Mechanics Computer Science Computer-Aided Engineering (CAD Control Fragmentation Heuristic methods Math. Applications in Chemistry Mathematical and Computational Engineering Mathematical models Optimization Original Article Parameter sensitivity Particle swarm optimization Power Root-mean-square errors Sensitivity analysis Systems Theory Tuning |
title | A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20auto-tuning%20model%20for%20predicting%20the%20rock%20fragmentation:%20a%20cat%20swarm%20optimization%20algorithm&rft.jtitle=Engineering%20with%20computers&rft.au=Huang,%20Jiandong&rft.date=2022-06-01&rft.volume=38&rft.issue=3&rft.spage=2209&rft.epage=2220&rft.pages=2209-2220&rft.issn=0177-0667&rft.eissn=1435-5663&rft_id=info:doi/10.1007/s00366-020-01207-4&rft_dat=%3Cproquest_cross%3E2672841577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672841577&rft_id=info:pmid/&rfr_iscdi=true |