A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm

The main focus of the present work is to offer an auto-tuning model, called cat swarm optimization (CSO), to predict rock fragmentation. This population-based method has a stochastic formation involving exploration and exploitation phases. CSO is a robust and powerful meta-heuristic algorithm inspir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering with computers 2022-06, Vol.38 (3), p.2209-2220
Hauptverfasser: Huang, Jiandong, Asteris, Panagiotis G., Manafi Khajeh Pasha, Siavash, Mohammed, Ahmed Salih, Hasanipanah, Mahdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2220
container_issue 3
container_start_page 2209
container_title Engineering with computers
container_volume 38
creator Huang, Jiandong
Asteris, Panagiotis G.
Manafi Khajeh Pasha, Siavash
Mohammed, Ahmed Salih
Hasanipanah, Mahdi
description The main focus of the present work is to offer an auto-tuning model, called cat swarm optimization (CSO), to predict rock fragmentation. This population-based method has a stochastic formation involving exploration and exploitation phases. CSO is a robust and powerful meta-heuristic algorithm inspired by the behaviors of cats; it is composed of two search modes: seeking and tracing, which can be joined by mixture ratio parameter. CSO is applied to large-scale optimization problems like rock fragmentation to have good forecasting parameters in D 80 formulas ( D 80 is a common descriptor that evaluates rock fragmentation). To evaluate the efficiency of the proposed CSO model, its obtained results were compared to those of the particle swarm optimization (PSO) algorithm. In the modeling, two forms of CSO and PSO models, including power and linear forms, were developed. The comparative results showed that CSO models outperformed the rival in terms of the task defined. The precision of the proposed models was computed using statistical evaluation criteria. Comparison results concluded that CSO-power model with the root mean square error (RMSE) of 0.847 was more computationally efficient with better predictive ability compared to CSO-linear, PSO-linear and PSO-power models with the RMSE of 1.314, 1.545 and 2.307, respectively. Furthermore, the sensitivity analysis revealed the effect of the stemming parameter upon D 80 in comparison with other input parameters.
doi_str_mv 10.1007/s00366-020-01207-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672841577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672841577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3a41b8de6c2c98f4e0000dfd6210fb84ca866241221a604c72763a9b402558663</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-AU8Bz9HJo0nrbVl8wYIXPYdsmna7bpuapCz66e1uBW_OZWD-j4EfQtcUbimAuosAXEoCDAhQBoqIEzSjgmckk5KfohlQpQhIqc7RRYxbAMoBihkyC9y5PTZD8iQNXdPVuPWl2-HKB9wHVzY2HY5p43Dw9gNXwdSt65JJje_uscHWJBz3JrTY96lpm--jgs2u9qFJm_YSnVVmF93V756j98eHt-UzWb0-vSwXK2I5LRLhRtB1XjppmS3ySjgYp6xKyShU61xYk0vJBGWMGgnCKqYkN8VaAMuyUeJzdDP19sF_Di4mvfVD6MaXmknFckEzpUYXm1w2-BiDq3QfmtaEL01BH1DqCaUeUeojSi3GEJ9CcTR3tQt_1f-kfgCjWHZH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672841577</pqid></control><display><type>article</type><title>A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm</title><source>SpringerLink Journals - AutoHoldings</source><creator>Huang, Jiandong ; Asteris, Panagiotis G. ; Manafi Khajeh Pasha, Siavash ; Mohammed, Ahmed Salih ; Hasanipanah, Mahdi</creator><creatorcontrib>Huang, Jiandong ; Asteris, Panagiotis G. ; Manafi Khajeh Pasha, Siavash ; Mohammed, Ahmed Salih ; Hasanipanah, Mahdi</creatorcontrib><description>The main focus of the present work is to offer an auto-tuning model, called cat swarm optimization (CSO), to predict rock fragmentation. This population-based method has a stochastic formation involving exploration and exploitation phases. CSO is a robust and powerful meta-heuristic algorithm inspired by the behaviors of cats; it is composed of two search modes: seeking and tracing, which can be joined by mixture ratio parameter. CSO is applied to large-scale optimization problems like rock fragmentation to have good forecasting parameters in D 80 formulas ( D 80 is a common descriptor that evaluates rock fragmentation). To evaluate the efficiency of the proposed CSO model, its obtained results were compared to those of the particle swarm optimization (PSO) algorithm. In the modeling, two forms of CSO and PSO models, including power and linear forms, were developed. The comparative results showed that CSO models outperformed the rival in terms of the task defined. The precision of the proposed models was computed using statistical evaluation criteria. Comparison results concluded that CSO-power model with the root mean square error (RMSE) of 0.847 was more computationally efficient with better predictive ability compared to CSO-linear, PSO-linear and PSO-power models with the RMSE of 1.314, 1.545 and 2.307, respectively. Furthermore, the sensitivity analysis revealed the effect of the stemming parameter upon D 80 in comparison with other input parameters.</description><identifier>ISSN: 0177-0667</identifier><identifier>EISSN: 1435-5663</identifier><identifier>DOI: 10.1007/s00366-020-01207-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Classical Mechanics ; Computer Science ; Computer-Aided Engineering (CAD ; Control ; Fragmentation ; Heuristic methods ; Math. Applications in Chemistry ; Mathematical and Computational Engineering ; Mathematical models ; Optimization ; Original Article ; Parameter sensitivity ; Particle swarm optimization ; Power ; Root-mean-square errors ; Sensitivity analysis ; Systems Theory ; Tuning</subject><ispartof>Engineering with computers, 2022-06, Vol.38 (3), p.2209-2220</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3a41b8de6c2c98f4e0000dfd6210fb84ca866241221a604c72763a9b402558663</citedby><cites>FETCH-LOGICAL-c319t-3a41b8de6c2c98f4e0000dfd6210fb84ca866241221a604c72763a9b402558663</cites><orcidid>0000-0001-7582-6745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00366-020-01207-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00366-020-01207-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Huang, Jiandong</creatorcontrib><creatorcontrib>Asteris, Panagiotis G.</creatorcontrib><creatorcontrib>Manafi Khajeh Pasha, Siavash</creatorcontrib><creatorcontrib>Mohammed, Ahmed Salih</creatorcontrib><creatorcontrib>Hasanipanah, Mahdi</creatorcontrib><title>A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm</title><title>Engineering with computers</title><addtitle>Engineering with Computers</addtitle><description>The main focus of the present work is to offer an auto-tuning model, called cat swarm optimization (CSO), to predict rock fragmentation. This population-based method has a stochastic formation involving exploration and exploitation phases. CSO is a robust and powerful meta-heuristic algorithm inspired by the behaviors of cats; it is composed of two search modes: seeking and tracing, which can be joined by mixture ratio parameter. CSO is applied to large-scale optimization problems like rock fragmentation to have good forecasting parameters in D 80 formulas ( D 80 is a common descriptor that evaluates rock fragmentation). To evaluate the efficiency of the proposed CSO model, its obtained results were compared to those of the particle swarm optimization (PSO) algorithm. In the modeling, two forms of CSO and PSO models, including power and linear forms, were developed. The comparative results showed that CSO models outperformed the rival in terms of the task defined. The precision of the proposed models was computed using statistical evaluation criteria. Comparison results concluded that CSO-power model with the root mean square error (RMSE) of 0.847 was more computationally efficient with better predictive ability compared to CSO-linear, PSO-linear and PSO-power models with the RMSE of 1.314, 1.545 and 2.307, respectively. Furthermore, the sensitivity analysis revealed the effect of the stemming parameter upon D 80 in comparison with other input parameters.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classical Mechanics</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Fragmentation</subject><subject>Heuristic methods</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Parameter sensitivity</subject><subject>Particle swarm optimization</subject><subject>Power</subject><subject>Root-mean-square errors</subject><subject>Sensitivity analysis</subject><subject>Systems Theory</subject><subject>Tuning</subject><issn>0177-0667</issn><issn>1435-5663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAQx4MouK5-AU8Bz9HJo0nrbVl8wYIXPYdsmna7bpuapCz66e1uBW_OZWD-j4EfQtcUbimAuosAXEoCDAhQBoqIEzSjgmckk5KfohlQpQhIqc7RRYxbAMoBihkyC9y5PTZD8iQNXdPVuPWl2-HKB9wHVzY2HY5p43Dw9gNXwdSt65JJje_uscHWJBz3JrTY96lpm--jgs2u9qFJm_YSnVVmF93V756j98eHt-UzWb0-vSwXK2I5LRLhRtB1XjppmS3ySjgYp6xKyShU61xYk0vJBGWMGgnCKqYkN8VaAMuyUeJzdDP19sF_Di4mvfVD6MaXmknFckEzpUYXm1w2-BiDq3QfmtaEL01BH1DqCaUeUeojSi3GEJ9CcTR3tQt_1f-kfgCjWHZH</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Huang, Jiandong</creator><creator>Asteris, Panagiotis G.</creator><creator>Manafi Khajeh Pasha, Siavash</creator><creator>Mohammed, Ahmed Salih</creator><creator>Hasanipanah, Mahdi</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7582-6745</orcidid></search><sort><creationdate>20220601</creationdate><title>A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm</title><author>Huang, Jiandong ; Asteris, Panagiotis G. ; Manafi Khajeh Pasha, Siavash ; Mohammed, Ahmed Salih ; Hasanipanah, Mahdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3a41b8de6c2c98f4e0000dfd6210fb84ca866241221a604c72763a9b402558663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classical Mechanics</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Fragmentation</topic><topic>Heuristic methods</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Parameter sensitivity</topic><topic>Particle swarm optimization</topic><topic>Power</topic><topic>Root-mean-square errors</topic><topic>Sensitivity analysis</topic><topic>Systems Theory</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jiandong</creatorcontrib><creatorcontrib>Asteris, Panagiotis G.</creatorcontrib><creatorcontrib>Manafi Khajeh Pasha, Siavash</creatorcontrib><creatorcontrib>Mohammed, Ahmed Salih</creatorcontrib><creatorcontrib>Hasanipanah, Mahdi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering with computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jiandong</au><au>Asteris, Panagiotis G.</au><au>Manafi Khajeh Pasha, Siavash</au><au>Mohammed, Ahmed Salih</au><au>Hasanipanah, Mahdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm</atitle><jtitle>Engineering with computers</jtitle><stitle>Engineering with Computers</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>38</volume><issue>3</issue><spage>2209</spage><epage>2220</epage><pages>2209-2220</pages><issn>0177-0667</issn><eissn>1435-5663</eissn><abstract>The main focus of the present work is to offer an auto-tuning model, called cat swarm optimization (CSO), to predict rock fragmentation. This population-based method has a stochastic formation involving exploration and exploitation phases. CSO is a robust and powerful meta-heuristic algorithm inspired by the behaviors of cats; it is composed of two search modes: seeking and tracing, which can be joined by mixture ratio parameter. CSO is applied to large-scale optimization problems like rock fragmentation to have good forecasting parameters in D 80 formulas ( D 80 is a common descriptor that evaluates rock fragmentation). To evaluate the efficiency of the proposed CSO model, its obtained results were compared to those of the particle swarm optimization (PSO) algorithm. In the modeling, two forms of CSO and PSO models, including power and linear forms, were developed. The comparative results showed that CSO models outperformed the rival in terms of the task defined. The precision of the proposed models was computed using statistical evaluation criteria. Comparison results concluded that CSO-power model with the root mean square error (RMSE) of 0.847 was more computationally efficient with better predictive ability compared to CSO-linear, PSO-linear and PSO-power models with the RMSE of 1.314, 1.545 and 2.307, respectively. Furthermore, the sensitivity analysis revealed the effect of the stemming parameter upon D 80 in comparison with other input parameters.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00366-020-01207-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7582-6745</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0177-0667
ispartof Engineering with computers, 2022-06, Vol.38 (3), p.2209-2220
issn 0177-0667
1435-5663
language eng
recordid cdi_proquest_journals_2672841577
source SpringerLink Journals - AutoHoldings
subjects Algorithms
CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Classical Mechanics
Computer Science
Computer-Aided Engineering (CAD
Control
Fragmentation
Heuristic methods
Math. Applications in Chemistry
Mathematical and Computational Engineering
Mathematical models
Optimization
Original Article
Parameter sensitivity
Particle swarm optimization
Power
Root-mean-square errors
Sensitivity analysis
Systems Theory
Tuning
title A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20auto-tuning%20model%20for%20predicting%20the%20rock%20fragmentation:%20a%20cat%20swarm%20optimization%20algorithm&rft.jtitle=Engineering%20with%20computers&rft.au=Huang,%20Jiandong&rft.date=2022-06-01&rft.volume=38&rft.issue=3&rft.spage=2209&rft.epage=2220&rft.pages=2209-2220&rft.issn=0177-0667&rft.eissn=1435-5663&rft_id=info:doi/10.1007/s00366-020-01207-4&rft_dat=%3Cproquest_cross%3E2672841577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672841577&rft_id=info:pmid/&rfr_iscdi=true