Self-Supervised Video Representation Learning by Uncovering Spatio-Temporal Statistics
This paper proposes a novel pretext task to address the self-supervised video representation learning problem. Specifically, given an unlabeled video clip, we compute a series of spatio-temporal statistical summaries, such as the spatial location and dominant direction of the largest motion, the spa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2022-07, Vol.44 (7), p.3791-3806 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3806 |
---|---|
container_issue | 7 |
container_start_page | 3791 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 44 |
creator | Wang, Jiangliu Jiao, Jianbo Bao, Linchao He, Shengfeng Liu, Wei Liu, Yun-hui |
description | This paper proposes a novel pretext task to address the self-supervised video representation learning problem. Specifically, given an unlabeled video clip, we compute a series of spatio-temporal statistical summaries, such as the spatial location and dominant direction of the largest motion, the spatial location and dominant color of the largest color diversity along the temporal axis, etc . Then a neural network is built and trained to yield the statistical summaries given the video frames as inputs. In order to alleviate the learning difficulty, we employ several spatial partitioning patterns to encode rough spatial locations instead of exact spatial Cartesian coordinates. Our approach is inspired by the observation that human visual system is sensitive to rapidly changing contents in the visual field, and only needs impressions about rough spatial locations to understand the visual contents. To validate the effectiveness of the proposed approach, we conduct extensive experiments with four 3D backbone networks, i.e., C3D, 3D-ResNet, R(2+1)D and S3D-G. The results show that our approach outperforms the existing approaches across these backbone networks on four downstream video analysis tasks including action recognition, video retrieval, dynamic scene recognition, and action similarity labeling. The source code is publicly available at: https://github.com/laura-wang/video_repres_sts . |
doi_str_mv | 10.1109/TPAMI.2021.3057833 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2672807841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9352025</ieee_id><sourcerecordid>2672807841</sourcerecordid><originalsourceid>FETCH-LOGICAL-i259t-a912023508fb20f3197bb5a0b6cc0e5d6bf329bddede985762720f98b46d252a3</originalsourceid><addsrcrecordid>eNpd0EtLw0AQB_BFFFurX0BBAl68pO4ju9k9SvFRqCim7TXsJhPZkpe7SaHf3pRWD56G4f9jmBmErgmeEoLVw_Lj8W0-pZiSKcM8loydoDFRTIWMM3WKxpgIGkpJ5QhdeL_BmEQcs3M0YowLEfN4jNYJlEWY9C24rfWQB2ubQxN8QuvAQ93pzjZ1sADtalt_BWYXrOqs2YLbd0m7j8MlVG3jdBkke-47m_lLdFbo0sPVsU7Q6vlpOXsNF-8v89njIrSUqy7UigzrM45lYSguGFGxMVxjI7IMA8-FKRhVJs8hByV5LGg8MCVNJHLKqWYTdH-Y27rmuwffpZX1GZSlrqHpfUojKTmPIiwGevePbpre1cN2KRUxlTiWERnU7VH1poI8bZ2ttNulvx8bwM0BWAD4ixXjwyGc_QD_VHa6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672807841</pqid></control><display><type>article</type><title>Self-Supervised Video Representation Learning by Uncovering Spatio-Temporal Statistics</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jiangliu ; Jiao, Jianbo ; Bao, Linchao ; He, Shengfeng ; Liu, Wei ; Liu, Yun-hui</creator><creatorcontrib>Wang, Jiangliu ; Jiao, Jianbo ; Bao, Linchao ; He, Shengfeng ; Liu, Wei ; Liu, Yun-hui</creatorcontrib><description>This paper proposes a novel pretext task to address the self-supervised video representation learning problem. Specifically, given an unlabeled video clip, we compute a series of spatio-temporal statistical summaries, such as the spatial location and dominant direction of the largest motion, the spatial location and dominant color of the largest color diversity along the temporal axis, etc . Then a neural network is built and trained to yield the statistical summaries given the video frames as inputs. In order to alleviate the learning difficulty, we employ several spatial partitioning patterns to encode rough spatial locations instead of exact spatial Cartesian coordinates. Our approach is inspired by the observation that human visual system is sensitive to rapidly changing contents in the visual field, and only needs impressions about rough spatial locations to understand the visual contents. To validate the effectiveness of the proposed approach, we conduct extensive experiments with four 3D backbone networks, i.e., C3D, 3D-ResNet, R(2+1)D and S3D-G. The results show that our approach outperforms the existing approaches across these backbone networks on four downstream video analysis tasks including action recognition, video retrieval, dynamic scene recognition, and action similarity labeling. The source code is publicly available at: https://github.com/laura-wang/video_repres_sts .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2021.3057833</identifier><identifier>PMID: 33566757</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D CNN ; Algorithms ; Cartesian coordinates ; Color ; Computer networks ; Feature extraction ; Humans ; Image color analysis ; Learning ; Motion ; Neural networks ; Neural Networks, Computer ; Recognition ; representation learning ; Representations ; Self-supervised learning ; Software ; Source code ; Summaries ; Task analysis ; Three-dimensional displays ; Training ; video understanding ; Visual fields ; Visual observation ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-07, Vol.44 (7), p.3791-3806</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3802-4644 ; 0000-0002-3625-6679 ; 0000-0003-0833-5115 ; 0000-0001-9543-3754 ; 0000-0003-2734-0243 ; 0000-0002-3865-8145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9352025$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9352025$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33566757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jiangliu</creatorcontrib><creatorcontrib>Jiao, Jianbo</creatorcontrib><creatorcontrib>Bao, Linchao</creatorcontrib><creatorcontrib>He, Shengfeng</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Liu, Yun-hui</creatorcontrib><title>Self-Supervised Video Representation Learning by Uncovering Spatio-Temporal Statistics</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper proposes a novel pretext task to address the self-supervised video representation learning problem. Specifically, given an unlabeled video clip, we compute a series of spatio-temporal statistical summaries, such as the spatial location and dominant direction of the largest motion, the spatial location and dominant color of the largest color diversity along the temporal axis, etc . Then a neural network is built and trained to yield the statistical summaries given the video frames as inputs. In order to alleviate the learning difficulty, we employ several spatial partitioning patterns to encode rough spatial locations instead of exact spatial Cartesian coordinates. Our approach is inspired by the observation that human visual system is sensitive to rapidly changing contents in the visual field, and only needs impressions about rough spatial locations to understand the visual contents. To validate the effectiveness of the proposed approach, we conduct extensive experiments with four 3D backbone networks, i.e., C3D, 3D-ResNet, R(2+1)D and S3D-G. The results show that our approach outperforms the existing approaches across these backbone networks on four downstream video analysis tasks including action recognition, video retrieval, dynamic scene recognition, and action similarity labeling. The source code is publicly available at: https://github.com/laura-wang/video_repres_sts .</description><subject>3D CNN</subject><subject>Algorithms</subject><subject>Cartesian coordinates</subject><subject>Color</subject><subject>Computer networks</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Learning</subject><subject>Motion</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Recognition</subject><subject>representation learning</subject><subject>Representations</subject><subject>Self-supervised learning</subject><subject>Software</subject><subject>Source code</subject><subject>Summaries</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>video understanding</subject><subject>Visual fields</subject><subject>Visual observation</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpd0EtLw0AQB_BFFFurX0BBAl68pO4ju9k9SvFRqCim7TXsJhPZkpe7SaHf3pRWD56G4f9jmBmErgmeEoLVw_Lj8W0-pZiSKcM8loydoDFRTIWMM3WKxpgIGkpJ5QhdeL_BmEQcs3M0YowLEfN4jNYJlEWY9C24rfWQB2ubQxN8QuvAQ93pzjZ1sADtalt_BWYXrOqs2YLbd0m7j8MlVG3jdBkke-47m_lLdFbo0sPVsU7Q6vlpOXsNF-8v89njIrSUqy7UigzrM45lYSguGFGxMVxjI7IMA8-FKRhVJs8hByV5LGg8MCVNJHLKqWYTdH-Y27rmuwffpZX1GZSlrqHpfUojKTmPIiwGevePbpre1cN2KRUxlTiWERnU7VH1poI8bZ2ttNulvx8bwM0BWAD4ixXjwyGc_QD_VHa6</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Wang, Jiangliu</creator><creator>Jiao, Jianbo</creator><creator>Bao, Linchao</creator><creator>He, Shengfeng</creator><creator>Liu, Wei</creator><creator>Liu, Yun-hui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3802-4644</orcidid><orcidid>https://orcid.org/0000-0002-3625-6679</orcidid><orcidid>https://orcid.org/0000-0003-0833-5115</orcidid><orcidid>https://orcid.org/0000-0001-9543-3754</orcidid><orcidid>https://orcid.org/0000-0003-2734-0243</orcidid><orcidid>https://orcid.org/0000-0002-3865-8145</orcidid></search><sort><creationdate>20220701</creationdate><title>Self-Supervised Video Representation Learning by Uncovering Spatio-Temporal Statistics</title><author>Wang, Jiangliu ; Jiao, Jianbo ; Bao, Linchao ; He, Shengfeng ; Liu, Wei ; Liu, Yun-hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i259t-a912023508fb20f3197bb5a0b6cc0e5d6bf329bddede985762720f98b46d252a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D CNN</topic><topic>Algorithms</topic><topic>Cartesian coordinates</topic><topic>Color</topic><topic>Computer networks</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Learning</topic><topic>Motion</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Recognition</topic><topic>representation learning</topic><topic>Representations</topic><topic>Self-supervised learning</topic><topic>Software</topic><topic>Source code</topic><topic>Summaries</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>video understanding</topic><topic>Visual fields</topic><topic>Visual observation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiangliu</creatorcontrib><creatorcontrib>Jiao, Jianbo</creatorcontrib><creatorcontrib>Bao, Linchao</creatorcontrib><creatorcontrib>He, Shengfeng</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Liu, Yun-hui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jiangliu</au><au>Jiao, Jianbo</au><au>Bao, Linchao</au><au>He, Shengfeng</au><au>Liu, Wei</au><au>Liu, Yun-hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Supervised Video Representation Learning by Uncovering Spatio-Temporal Statistics</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>44</volume><issue>7</issue><spage>3791</spage><epage>3806</epage><pages>3791-3806</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>This paper proposes a novel pretext task to address the self-supervised video representation learning problem. Specifically, given an unlabeled video clip, we compute a series of spatio-temporal statistical summaries, such as the spatial location and dominant direction of the largest motion, the spatial location and dominant color of the largest color diversity along the temporal axis, etc . Then a neural network is built and trained to yield the statistical summaries given the video frames as inputs. In order to alleviate the learning difficulty, we employ several spatial partitioning patterns to encode rough spatial locations instead of exact spatial Cartesian coordinates. Our approach is inspired by the observation that human visual system is sensitive to rapidly changing contents in the visual field, and only needs impressions about rough spatial locations to understand the visual contents. To validate the effectiveness of the proposed approach, we conduct extensive experiments with four 3D backbone networks, i.e., C3D, 3D-ResNet, R(2+1)D and S3D-G. The results show that our approach outperforms the existing approaches across these backbone networks on four downstream video analysis tasks including action recognition, video retrieval, dynamic scene recognition, and action similarity labeling. The source code is publicly available at: https://github.com/laura-wang/video_repres_sts .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33566757</pmid><doi>10.1109/TPAMI.2021.3057833</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3802-4644</orcidid><orcidid>https://orcid.org/0000-0002-3625-6679</orcidid><orcidid>https://orcid.org/0000-0003-0833-5115</orcidid><orcidid>https://orcid.org/0000-0001-9543-3754</orcidid><orcidid>https://orcid.org/0000-0003-2734-0243</orcidid><orcidid>https://orcid.org/0000-0002-3865-8145</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2022-07, Vol.44 (7), p.3791-3806 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_journals_2672807841 |
source | IEEE Electronic Library (IEL) |
subjects | 3D CNN Algorithms Cartesian coordinates Color Computer networks Feature extraction Humans Image color analysis Learning Motion Neural networks Neural Networks, Computer Recognition representation learning Representations Self-supervised learning Software Source code Summaries Task analysis Three-dimensional displays Training video understanding Visual fields Visual observation Visualization |
title | Self-Supervised Video Representation Learning by Uncovering Spatio-Temporal Statistics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Supervised%20Video%20Representation%20Learning%20by%20Uncovering%20Spatio-Temporal%20Statistics&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Wang,%20Jiangliu&rft.date=2022-07-01&rft.volume=44&rft.issue=7&rft.spage=3791&rft.epage=3806&rft.pages=3791-3806&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3057833&rft_dat=%3Cproquest_RIE%3E2672807841%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672807841&rft_id=info:pmid/33566757&rft_ieee_id=9352025&rfr_iscdi=true |