Engaging Part-Whole Hierarchies and Contrast Cues for Salient Object Detection

Real-world scenes always exhibit objects with clutter backgrounds, posing great challenges for deep salient object detection models. In this paper, we propose salient object detection by engaging two saliency cues, i.e. , the part-whole hierarchies and contrast cues, resulting in a PWHCNet. Specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2022-06, Vol.32 (6), p.3644-3658
Hauptverfasser: Zhang, Qiang, Duanmu, Mingxing, Luo, Yongjiang, Liu, Yi, Han, Jungong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3658
container_issue 6
container_start_page 3644
container_title IEEE transactions on circuits and systems for video technology
container_volume 32
creator Zhang, Qiang
Duanmu, Mingxing
Luo, Yongjiang
Liu, Yi
Han, Jungong
description Real-world scenes always exhibit objects with clutter backgrounds, posing great challenges for deep salient object detection models. In this paper, we propose salient object detection by engaging two saliency cues, i.e. , the part-whole hierarchies and contrast cues, resulting in a PWHCNet. Specifically, two branches, which consists of a Dynamic Grouping Capsules (DGC) branch and a DenseHRNet branch, are put in place to learn the part-whole hierarchies and contrast cues, respectively. Moreover, to help highlight the whole salient object in complex scenes, a Background Suppression (BS) module is proposed to guide the shallow features of DenseHRNet with the aid of the part-whole relational cues captured by DGC. Subsequently, these two saliency cues are integrated via a Self-Channel and Mutual-Spatial (SCMS) attention mechanism. Experimental results on five benchmarks demonstrate that the proposed PWHCNet achieves state-of-the-art performance while obtaining the whole salient objects with fine details.
doi_str_mv 10.1109/TCSVT.2021.3104932
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2672806214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9514538</ieee_id><sourcerecordid>2672806214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-14ff41bdd3e307533914a5f41ca900fb273b48c879c00f6d1b39e6900393f7d53</originalsourceid><addsrcrecordid>eNo9UE1PAjEQbYwmIvoH9NLE82KnH7vbo1lBTIiYgHpsut0uLMEttuXgv7cI8fRm3rw3M3kI3QIZARD5sKwWH8sRJRRGDAiXjJ6hAQhRZpQScZ5qIiArKYhLdBXChhDgJS8G6HXcr_Sq61f4TfuYfa7d1uJpZ732Zt3ZgHXf4Mr10esQcbVPTOs8XuhtZ_uI5_XGmoifbEzQuf4aXbR6G-zNCYfofTJeVtNsNn9-qR5nmWFMxgx423Kom4ZZRgqROOBaJMpoSUhb04LVvDRlIU1q8wZqJm2eRkyytmgEG6L7496dd9_pqag2bu_7dFLRvKAlySnwpKJHlfEuBG9btfPdl_Y_Cog65Kb-clOH3NQpt2S6O5o6a-2_QQrggpXsFxTKaC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672806214</pqid></control><display><type>article</type><title>Engaging Part-Whole Hierarchies and Contrast Cues for Salient Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Qiang ; Duanmu, Mingxing ; Luo, Yongjiang ; Liu, Yi ; Han, Jungong</creator><creatorcontrib>Zhang, Qiang ; Duanmu, Mingxing ; Luo, Yongjiang ; Liu, Yi ; Han, Jungong</creatorcontrib><description>Real-world scenes always exhibit objects with clutter backgrounds, posing great challenges for deep salient object detection models. In this paper, we propose salient object detection by engaging two saliency cues, i.e. , the part-whole hierarchies and contrast cues, resulting in a PWHCNet. Specifically, two branches, which consists of a Dynamic Grouping Capsules (DGC) branch and a DenseHRNet branch, are put in place to learn the part-whole hierarchies and contrast cues, respectively. Moreover, to help highlight the whole salient object in complex scenes, a Background Suppression (BS) module is proposed to guide the shallow features of DenseHRNet with the aid of the part-whole relational cues captured by DGC. Subsequently, these two saliency cues are integrated via a Self-Channel and Mutual-Spatial (SCMS) attention mechanism. Experimental results on five benchmarks demonstrate that the proposed PWHCNet achieves state-of-the-art performance while obtaining the whole salient objects with fine details.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2021.3104932</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>attention ; Clutter ; contrast ; Feature extraction ; Hierarchies ; Image segmentation ; Noise measurement ; Object detection ; Object recognition ; part-whole hierarchies ; Routing ; Salience ; Saliency detection ; Salient object detection ; Semantics</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-06, Vol.32 (6), p.3644-3658</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-14ff41bdd3e307533914a5f41ca900fb273b48c879c00f6d1b39e6900393f7d53</citedby><cites>FETCH-LOGICAL-c339t-14ff41bdd3e307533914a5f41ca900fb273b48c879c00f6d1b39e6900393f7d53</cites><orcidid>0000-0003-2500-8503 ; 0000-0002-7427-5758 ; 0000-0002-5110-5350 ; 0000-0003-4361-956X ; 0000-0002-2828-9905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9514538$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9514538$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Duanmu, Mingxing</creatorcontrib><creatorcontrib>Luo, Yongjiang</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Han, Jungong</creatorcontrib><title>Engaging Part-Whole Hierarchies and Contrast Cues for Salient Object Detection</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Real-world scenes always exhibit objects with clutter backgrounds, posing great challenges for deep salient object detection models. In this paper, we propose salient object detection by engaging two saliency cues, i.e. , the part-whole hierarchies and contrast cues, resulting in a PWHCNet. Specifically, two branches, which consists of a Dynamic Grouping Capsules (DGC) branch and a DenseHRNet branch, are put in place to learn the part-whole hierarchies and contrast cues, respectively. Moreover, to help highlight the whole salient object in complex scenes, a Background Suppression (BS) module is proposed to guide the shallow features of DenseHRNet with the aid of the part-whole relational cues captured by DGC. Subsequently, these two saliency cues are integrated via a Self-Channel and Mutual-Spatial (SCMS) attention mechanism. Experimental results on five benchmarks demonstrate that the proposed PWHCNet achieves state-of-the-art performance while obtaining the whole salient objects with fine details.</description><subject>attention</subject><subject>Clutter</subject><subject>contrast</subject><subject>Feature extraction</subject><subject>Hierarchies</subject><subject>Image segmentation</subject><subject>Noise measurement</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>part-whole hierarchies</subject><subject>Routing</subject><subject>Salience</subject><subject>Saliency detection</subject><subject>Salient object detection</subject><subject>Semantics</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1PAjEQbYwmIvoH9NLE82KnH7vbo1lBTIiYgHpsut0uLMEttuXgv7cI8fRm3rw3M3kI3QIZARD5sKwWH8sRJRRGDAiXjJ6hAQhRZpQScZ5qIiArKYhLdBXChhDgJS8G6HXcr_Sq61f4TfuYfa7d1uJpZ732Zt3ZgHXf4Mr10esQcbVPTOs8XuhtZ_uI5_XGmoifbEzQuf4aXbR6G-zNCYfofTJeVtNsNn9-qR5nmWFMxgx423Kom4ZZRgqROOBaJMpoSUhb04LVvDRlIU1q8wZqJm2eRkyytmgEG6L7496dd9_pqag2bu_7dFLRvKAlySnwpKJHlfEuBG9btfPdl_Y_Cog65Kb-clOH3NQpt2S6O5o6a-2_QQrggpXsFxTKaC0</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Zhang, Qiang</creator><creator>Duanmu, Mingxing</creator><creator>Luo, Yongjiang</creator><creator>Liu, Yi</creator><creator>Han, Jungong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2500-8503</orcidid><orcidid>https://orcid.org/0000-0002-7427-5758</orcidid><orcidid>https://orcid.org/0000-0002-5110-5350</orcidid><orcidid>https://orcid.org/0000-0003-4361-956X</orcidid><orcidid>https://orcid.org/0000-0002-2828-9905</orcidid></search><sort><creationdate>20220601</creationdate><title>Engaging Part-Whole Hierarchies and Contrast Cues for Salient Object Detection</title><author>Zhang, Qiang ; Duanmu, Mingxing ; Luo, Yongjiang ; Liu, Yi ; Han, Jungong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-14ff41bdd3e307533914a5f41ca900fb273b48c879c00f6d1b39e6900393f7d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>attention</topic><topic>Clutter</topic><topic>contrast</topic><topic>Feature extraction</topic><topic>Hierarchies</topic><topic>Image segmentation</topic><topic>Noise measurement</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>part-whole hierarchies</topic><topic>Routing</topic><topic>Salience</topic><topic>Saliency detection</topic><topic>Salient object detection</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Duanmu, Mingxing</creatorcontrib><creatorcontrib>Luo, Yongjiang</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Han, Jungong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Qiang</au><au>Duanmu, Mingxing</au><au>Luo, Yongjiang</au><au>Liu, Yi</au><au>Han, Jungong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engaging Part-Whole Hierarchies and Contrast Cues for Salient Object Detection</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>6</issue><spage>3644</spage><epage>3658</epage><pages>3644-3658</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Real-world scenes always exhibit objects with clutter backgrounds, posing great challenges for deep salient object detection models. In this paper, we propose salient object detection by engaging two saliency cues, i.e. , the part-whole hierarchies and contrast cues, resulting in a PWHCNet. Specifically, two branches, which consists of a Dynamic Grouping Capsules (DGC) branch and a DenseHRNet branch, are put in place to learn the part-whole hierarchies and contrast cues, respectively. Moreover, to help highlight the whole salient object in complex scenes, a Background Suppression (BS) module is proposed to guide the shallow features of DenseHRNet with the aid of the part-whole relational cues captured by DGC. Subsequently, these two saliency cues are integrated via a Self-Channel and Mutual-Spatial (SCMS) attention mechanism. Experimental results on five benchmarks demonstrate that the proposed PWHCNet achieves state-of-the-art performance while obtaining the whole salient objects with fine details.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2021.3104932</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2500-8503</orcidid><orcidid>https://orcid.org/0000-0002-7427-5758</orcidid><orcidid>https://orcid.org/0000-0002-5110-5350</orcidid><orcidid>https://orcid.org/0000-0003-4361-956X</orcidid><orcidid>https://orcid.org/0000-0002-2828-9905</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2022-06, Vol.32 (6), p.3644-3658
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_2672806214
source IEEE Electronic Library (IEL)
subjects attention
Clutter
contrast
Feature extraction
Hierarchies
Image segmentation
Noise measurement
Object detection
Object recognition
part-whole hierarchies
Routing
Salience
Saliency detection
Salient object detection
Semantics
title Engaging Part-Whole Hierarchies and Contrast Cues for Salient Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engaging%20Part-Whole%20Hierarchies%20and%20Contrast%20Cues%20for%20Salient%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zhang,%20Qiang&rft.date=2022-06-01&rft.volume=32&rft.issue=6&rft.spage=3644&rft.epage=3658&rft.pages=3644-3658&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2021.3104932&rft_dat=%3Cproquest_RIE%3E2672806214%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672806214&rft_id=info:pmid/&rft_ieee_id=9514538&rfr_iscdi=true