Engaging Part-Whole Hierarchies and Contrast Cues for Salient Object Detection
Real-world scenes always exhibit objects with clutter backgrounds, posing great challenges for deep salient object detection models. In this paper, we propose salient object detection by engaging two saliency cues, i.e. , the part-whole hierarchies and contrast cues, resulting in a PWHCNet. Specific...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2022-06, Vol.32 (6), p.3644-3658 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3658 |
---|---|
container_issue | 6 |
container_start_page | 3644 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 32 |
creator | Zhang, Qiang Duanmu, Mingxing Luo, Yongjiang Liu, Yi Han, Jungong |
description | Real-world scenes always exhibit objects with clutter backgrounds, posing great challenges for deep salient object detection models. In this paper, we propose salient object detection by engaging two saliency cues, i.e. , the part-whole hierarchies and contrast cues, resulting in a PWHCNet. Specifically, two branches, which consists of a Dynamic Grouping Capsules (DGC) branch and a DenseHRNet branch, are put in place to learn the part-whole hierarchies and contrast cues, respectively. Moreover, to help highlight the whole salient object in complex scenes, a Background Suppression (BS) module is proposed to guide the shallow features of DenseHRNet with the aid of the part-whole relational cues captured by DGC. Subsequently, these two saliency cues are integrated via a Self-Channel and Mutual-Spatial (SCMS) attention mechanism. Experimental results on five benchmarks demonstrate that the proposed PWHCNet achieves state-of-the-art performance while obtaining the whole salient objects with fine details. |
doi_str_mv | 10.1109/TCSVT.2021.3104932 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2672806214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9514538</ieee_id><sourcerecordid>2672806214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-14ff41bdd3e307533914a5f41ca900fb273b48c879c00f6d1b39e6900393f7d53</originalsourceid><addsrcrecordid>eNo9UE1PAjEQbYwmIvoH9NLE82KnH7vbo1lBTIiYgHpsut0uLMEttuXgv7cI8fRm3rw3M3kI3QIZARD5sKwWH8sRJRRGDAiXjJ6hAQhRZpQScZ5qIiArKYhLdBXChhDgJS8G6HXcr_Sq61f4TfuYfa7d1uJpZ732Zt3ZgHXf4Mr10esQcbVPTOs8XuhtZ_uI5_XGmoifbEzQuf4aXbR6G-zNCYfofTJeVtNsNn9-qR5nmWFMxgx423Kom4ZZRgqROOBaJMpoSUhb04LVvDRlIU1q8wZqJm2eRkyytmgEG6L7496dd9_pqag2bu_7dFLRvKAlySnwpKJHlfEuBG9btfPdl_Y_Cog65Kb-clOH3NQpt2S6O5o6a-2_QQrggpXsFxTKaC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672806214</pqid></control><display><type>article</type><title>Engaging Part-Whole Hierarchies and Contrast Cues for Salient Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Qiang ; Duanmu, Mingxing ; Luo, Yongjiang ; Liu, Yi ; Han, Jungong</creator><creatorcontrib>Zhang, Qiang ; Duanmu, Mingxing ; Luo, Yongjiang ; Liu, Yi ; Han, Jungong</creatorcontrib><description>Real-world scenes always exhibit objects with clutter backgrounds, posing great challenges for deep salient object detection models. In this paper, we propose salient object detection by engaging two saliency cues, i.e. , the part-whole hierarchies and contrast cues, resulting in a PWHCNet. Specifically, two branches, which consists of a Dynamic Grouping Capsules (DGC) branch and a DenseHRNet branch, are put in place to learn the part-whole hierarchies and contrast cues, respectively. Moreover, to help highlight the whole salient object in complex scenes, a Background Suppression (BS) module is proposed to guide the shallow features of DenseHRNet with the aid of the part-whole relational cues captured by DGC. Subsequently, these two saliency cues are integrated via a Self-Channel and Mutual-Spatial (SCMS) attention mechanism. Experimental results on five benchmarks demonstrate that the proposed PWHCNet achieves state-of-the-art performance while obtaining the whole salient objects with fine details.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2021.3104932</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>attention ; Clutter ; contrast ; Feature extraction ; Hierarchies ; Image segmentation ; Noise measurement ; Object detection ; Object recognition ; part-whole hierarchies ; Routing ; Salience ; Saliency detection ; Salient object detection ; Semantics</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-06, Vol.32 (6), p.3644-3658</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-14ff41bdd3e307533914a5f41ca900fb273b48c879c00f6d1b39e6900393f7d53</citedby><cites>FETCH-LOGICAL-c339t-14ff41bdd3e307533914a5f41ca900fb273b48c879c00f6d1b39e6900393f7d53</cites><orcidid>0000-0003-2500-8503 ; 0000-0002-7427-5758 ; 0000-0002-5110-5350 ; 0000-0003-4361-956X ; 0000-0002-2828-9905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9514538$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9514538$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Duanmu, Mingxing</creatorcontrib><creatorcontrib>Luo, Yongjiang</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Han, Jungong</creatorcontrib><title>Engaging Part-Whole Hierarchies and Contrast Cues for Salient Object Detection</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Real-world scenes always exhibit objects with clutter backgrounds, posing great challenges for deep salient object detection models. In this paper, we propose salient object detection by engaging two saliency cues, i.e. , the part-whole hierarchies and contrast cues, resulting in a PWHCNet. Specifically, two branches, which consists of a Dynamic Grouping Capsules (DGC) branch and a DenseHRNet branch, are put in place to learn the part-whole hierarchies and contrast cues, respectively. Moreover, to help highlight the whole salient object in complex scenes, a Background Suppression (BS) module is proposed to guide the shallow features of DenseHRNet with the aid of the part-whole relational cues captured by DGC. Subsequently, these two saliency cues are integrated via a Self-Channel and Mutual-Spatial (SCMS) attention mechanism. Experimental results on five benchmarks demonstrate that the proposed PWHCNet achieves state-of-the-art performance while obtaining the whole salient objects with fine details.</description><subject>attention</subject><subject>Clutter</subject><subject>contrast</subject><subject>Feature extraction</subject><subject>Hierarchies</subject><subject>Image segmentation</subject><subject>Noise measurement</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>part-whole hierarchies</subject><subject>Routing</subject><subject>Salience</subject><subject>Saliency detection</subject><subject>Salient object detection</subject><subject>Semantics</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1PAjEQbYwmIvoH9NLE82KnH7vbo1lBTIiYgHpsut0uLMEttuXgv7cI8fRm3rw3M3kI3QIZARD5sKwWH8sRJRRGDAiXjJ6hAQhRZpQScZ5qIiArKYhLdBXChhDgJS8G6HXcr_Sq61f4TfuYfa7d1uJpZ732Zt3ZgHXf4Mr10esQcbVPTOs8XuhtZ_uI5_XGmoifbEzQuf4aXbR6G-zNCYfofTJeVtNsNn9-qR5nmWFMxgx423Kom4ZZRgqROOBaJMpoSUhb04LVvDRlIU1q8wZqJm2eRkyytmgEG6L7496dd9_pqag2bu_7dFLRvKAlySnwpKJHlfEuBG9btfPdl_Y_Cog65Kb-clOH3NQpt2S6O5o6a-2_QQrggpXsFxTKaC0</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Zhang, Qiang</creator><creator>Duanmu, Mingxing</creator><creator>Luo, Yongjiang</creator><creator>Liu, Yi</creator><creator>Han, Jungong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2500-8503</orcidid><orcidid>https://orcid.org/0000-0002-7427-5758</orcidid><orcidid>https://orcid.org/0000-0002-5110-5350</orcidid><orcidid>https://orcid.org/0000-0003-4361-956X</orcidid><orcidid>https://orcid.org/0000-0002-2828-9905</orcidid></search><sort><creationdate>20220601</creationdate><title>Engaging Part-Whole Hierarchies and Contrast Cues for Salient Object Detection</title><author>Zhang, Qiang ; Duanmu, Mingxing ; Luo, Yongjiang ; Liu, Yi ; Han, Jungong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-14ff41bdd3e307533914a5f41ca900fb273b48c879c00f6d1b39e6900393f7d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>attention</topic><topic>Clutter</topic><topic>contrast</topic><topic>Feature extraction</topic><topic>Hierarchies</topic><topic>Image segmentation</topic><topic>Noise measurement</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>part-whole hierarchies</topic><topic>Routing</topic><topic>Salience</topic><topic>Saliency detection</topic><topic>Salient object detection</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Duanmu, Mingxing</creatorcontrib><creatorcontrib>Luo, Yongjiang</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Han, Jungong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Qiang</au><au>Duanmu, Mingxing</au><au>Luo, Yongjiang</au><au>Liu, Yi</au><au>Han, Jungong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engaging Part-Whole Hierarchies and Contrast Cues for Salient Object Detection</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>6</issue><spage>3644</spage><epage>3658</epage><pages>3644-3658</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Real-world scenes always exhibit objects with clutter backgrounds, posing great challenges for deep salient object detection models. In this paper, we propose salient object detection by engaging two saliency cues, i.e. , the part-whole hierarchies and contrast cues, resulting in a PWHCNet. Specifically, two branches, which consists of a Dynamic Grouping Capsules (DGC) branch and a DenseHRNet branch, are put in place to learn the part-whole hierarchies and contrast cues, respectively. Moreover, to help highlight the whole salient object in complex scenes, a Background Suppression (BS) module is proposed to guide the shallow features of DenseHRNet with the aid of the part-whole relational cues captured by DGC. Subsequently, these two saliency cues are integrated via a Self-Channel and Mutual-Spatial (SCMS) attention mechanism. Experimental results on five benchmarks demonstrate that the proposed PWHCNet achieves state-of-the-art performance while obtaining the whole salient objects with fine details.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2021.3104932</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2500-8503</orcidid><orcidid>https://orcid.org/0000-0002-7427-5758</orcidid><orcidid>https://orcid.org/0000-0002-5110-5350</orcidid><orcidid>https://orcid.org/0000-0003-4361-956X</orcidid><orcidid>https://orcid.org/0000-0002-2828-9905</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2022-06, Vol.32 (6), p.3644-3658 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_proquest_journals_2672806214 |
source | IEEE Electronic Library (IEL) |
subjects | attention Clutter contrast Feature extraction Hierarchies Image segmentation Noise measurement Object detection Object recognition part-whole hierarchies Routing Salience Saliency detection Salient object detection Semantics |
title | Engaging Part-Whole Hierarchies and Contrast Cues for Salient Object Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engaging%20Part-Whole%20Hierarchies%20and%20Contrast%20Cues%20for%20Salient%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zhang,%20Qiang&rft.date=2022-06-01&rft.volume=32&rft.issue=6&rft.spage=3644&rft.epage=3658&rft.pages=3644-3658&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2021.3104932&rft_dat=%3Cproquest_RIE%3E2672806214%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672806214&rft_id=info:pmid/&rft_ieee_id=9514538&rfr_iscdi=true |