Heterogeneity in Blood Biomarker Trajectories After Mild TBI Revealed by Unsupervised Learning

Concussions, also known as mild traumatic brain injury (mTBI), are a growing health challenge. Approximately four million concussions are diagnosed annually in the United States. Concussion is a heterogeneous disorder in causation, symptoms, and outcome making precision medicine approaches to this d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2022-05, Vol.19 (3), p.1365-1378
Hauptverfasser: Bui, Lien A., Yeboah, Dacosta, Steinmeister, Louis, Azizi, Sima, Hier, Daniel B., Wunsch, Donald C., Olbricht, Gayla R., Obafemi-Ajayi, Tayo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1378
container_issue 3
container_start_page 1365
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 19
creator Bui, Lien A.
Yeboah, Dacosta
Steinmeister, Louis
Azizi, Sima
Hier, Daniel B.
Wunsch, Donald C.
Olbricht, Gayla R.
Obafemi-Ajayi, Tayo
description Concussions, also known as mild traumatic brain injury (mTBI), are a growing health challenge. Approximately four million concussions are diagnosed annually in the United States. Concussion is a heterogeneous disorder in causation, symptoms, and outcome making precision medicine approaches to this disorder important. Persistent disabling symptoms sometimes delay recovery in a difficult to predict subset of mTBI patients. Despite abundant data, clinicians need better tools to assess and predict recovery. Data-driven decision support holds promise for accurate clinical prediction tools for mTBI due to its ability to identify hidden correlations in complex datasets. We apply a Locality-Sensitive Hashing model enhanced by varied statistical methods to cluster blood biomarker level trajectories acquired over multiple time points. Additional features derived from demographics, injury context, neurocognitive assessment, and postural stability assessment are extracted using an autoencoder to augment the model. The data, obtained from FITBIR, consisted of 301 concussed subjects (athletes and cadets). Clustering identified 11 different biomarker trajectories. Two of the trajectories (rising GFAP and rising NF-L) were associated with a greater risk of loss of consciousness or post-traumatic amnesia at onset. The ability to cluster blood biomarker trajectories enhances the possibilities for precision medicine approaches to mTBI.
doi_str_mv 10.1109/TCBB.2021.3091972
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2672805590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9464719</ieee_id><sourcerecordid>2545599238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-e00f8366af5559d4e9aa8db0f3ab1adef3d1a0cfa5926c72461ab3cb746e5ad53</originalsourceid><addsrcrecordid>eNpdkE1r4zAQhsXSsv3aH1AKRdBLL87q29GxDv2CLAslva6QrXFR6lipZAfy71chaQ89zQzzvMPwIHRJyYRSon8vZlU1YYTRCSea6pL9QKdUyrLQWomjXS9kIbXiJ-gspSUhTGgifqITLqhSjJBT9O8JBojhDXrwwxb7HlddCA5XPqxsfIeIF9EuoRlC9JDwXZtp_Md3Di-qZ_wCG7AdOFxv8WufxjXEjU95noONve_fLtBxa7sEvw71HL0-3C9mT8X87-Pz7G5eNJyyoQBC2ilXyrZSSu0EaGunriYttzW1DlruqCVNa6VmqimZUNTWvKlLoUBaJ_k5ut3fXcfwMUIazMqnBrrO9hDGZFg2IbVmfJrRm2_oMoyxz98Zpko2JRkkmaJ7qokhpQitWUefjWwNJWYn3-zkm518c5CfM9eHy2O9AveV-LSdgas94AHga62FEiXV_D-R_Ihs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672805590</pqid></control><display><type>article</type><title>Heterogeneity in Blood Biomarker Trajectories After Mild TBI Revealed by Unsupervised Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Bui, Lien A. ; Yeboah, Dacosta ; Steinmeister, Louis ; Azizi, Sima ; Hier, Daniel B. ; Wunsch, Donald C. ; Olbricht, Gayla R. ; Obafemi-Ajayi, Tayo</creator><creatorcontrib>Bui, Lien A. ; Yeboah, Dacosta ; Steinmeister, Louis ; Azizi, Sima ; Hier, Daniel B. ; Wunsch, Donald C. ; Olbricht, Gayla R. ; Obafemi-Ajayi, Tayo</creatorcontrib><description>Concussions, also known as mild traumatic brain injury (mTBI), are a growing health challenge. Approximately four million concussions are diagnosed annually in the United States. Concussion is a heterogeneous disorder in causation, symptoms, and outcome making precision medicine approaches to this disorder important. Persistent disabling symptoms sometimes delay recovery in a difficult to predict subset of mTBI patients. Despite abundant data, clinicians need better tools to assess and predict recovery. Data-driven decision support holds promise for accurate clinical prediction tools for mTBI due to its ability to identify hidden correlations in complex datasets. We apply a Locality-Sensitive Hashing model enhanced by varied statistical methods to cluster blood biomarker level trajectories acquired over multiple time points. Additional features derived from demographics, injury context, neurocognitive assessment, and postural stability assessment are extracted using an autoencoder to augment the model. The data, obtained from FITBIR, consisted of 301 concussed subjects (athletes and cadets). Clustering identified 11 different biomarker trajectories. Two of the trajectories (rising GFAP and rising NF-L) were associated with a greater risk of loss of consciousness or post-traumatic amnesia at onset. The ability to cluster blood biomarker trajectories enhances the possibilities for precision medicine approaches to mTBI.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2021.3091972</identifier><identifier>PMID: 34166200</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Amnesia ; Athletes ; Biological system modeling ; Biomarkers ; Blood ; Brain Concussion - diagnosis ; Clustering ; Cognition ; Concussion ; concussions ; Data recovery ; GFAP ; Glial fibrillary acidic protein ; Head injuries ; Heterogeneity ; Humans ; Injuries ; Mathematical models ; Medicine ; NF-L ; Precision medicine ; predictive modeling ; Proteins ; Sports ; Stability analysis ; Stability augmentation ; statistical analysis ; Statistical methods ; tau ; Trajectory ; Traumatic brain injury ; UCH-L1 ; Unsupervised learning ; Unsupervised Machine Learning</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2022-05, Vol.19 (3), p.1365-1378</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-e00f8366af5559d4e9aa8db0f3ab1adef3d1a0cfa5926c72461ab3cb746e5ad53</citedby><cites>FETCH-LOGICAL-c312t-e00f8366af5559d4e9aa8db0f3ab1adef3d1a0cfa5926c72461ab3cb746e5ad53</cites><orcidid>0000-0002-1213-2241 ; 0000-0002-0155-9733 ; 0000-0003-3204-4190 ; 0000-0002-6179-0793 ; 0000-0002-9726-9051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9464719$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9464719$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34166200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bui, Lien A.</creatorcontrib><creatorcontrib>Yeboah, Dacosta</creatorcontrib><creatorcontrib>Steinmeister, Louis</creatorcontrib><creatorcontrib>Azizi, Sima</creatorcontrib><creatorcontrib>Hier, Daniel B.</creatorcontrib><creatorcontrib>Wunsch, Donald C.</creatorcontrib><creatorcontrib>Olbricht, Gayla R.</creatorcontrib><creatorcontrib>Obafemi-Ajayi, Tayo</creatorcontrib><title>Heterogeneity in Blood Biomarker Trajectories After Mild TBI Revealed by Unsupervised Learning</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Concussions, also known as mild traumatic brain injury (mTBI), are a growing health challenge. Approximately four million concussions are diagnosed annually in the United States. Concussion is a heterogeneous disorder in causation, symptoms, and outcome making precision medicine approaches to this disorder important. Persistent disabling symptoms sometimes delay recovery in a difficult to predict subset of mTBI patients. Despite abundant data, clinicians need better tools to assess and predict recovery. Data-driven decision support holds promise for accurate clinical prediction tools for mTBI due to its ability to identify hidden correlations in complex datasets. We apply a Locality-Sensitive Hashing model enhanced by varied statistical methods to cluster blood biomarker level trajectories acquired over multiple time points. Additional features derived from demographics, injury context, neurocognitive assessment, and postural stability assessment are extracted using an autoencoder to augment the model. The data, obtained from FITBIR, consisted of 301 concussed subjects (athletes and cadets). Clustering identified 11 different biomarker trajectories. Two of the trajectories (rising GFAP and rising NF-L) were associated with a greater risk of loss of consciousness or post-traumatic amnesia at onset. The ability to cluster blood biomarker trajectories enhances the possibilities for precision medicine approaches to mTBI.</description><subject>Amnesia</subject><subject>Athletes</subject><subject>Biological system modeling</subject><subject>Biomarkers</subject><subject>Blood</subject><subject>Brain Concussion - diagnosis</subject><subject>Clustering</subject><subject>Cognition</subject><subject>Concussion</subject><subject>concussions</subject><subject>Data recovery</subject><subject>GFAP</subject><subject>Glial fibrillary acidic protein</subject><subject>Head injuries</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Injuries</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>NF-L</subject><subject>Precision medicine</subject><subject>predictive modeling</subject><subject>Proteins</subject><subject>Sports</subject><subject>Stability analysis</subject><subject>Stability augmentation</subject><subject>statistical analysis</subject><subject>Statistical methods</subject><subject>tau</subject><subject>Trajectory</subject><subject>Traumatic brain injury</subject><subject>UCH-L1</subject><subject>Unsupervised learning</subject><subject>Unsupervised Machine Learning</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1r4zAQhsXSsv3aH1AKRdBLL87q29GxDv2CLAslva6QrXFR6lipZAfy71chaQ89zQzzvMPwIHRJyYRSon8vZlU1YYTRCSea6pL9QKdUyrLQWomjXS9kIbXiJ-gspSUhTGgifqITLqhSjJBT9O8JBojhDXrwwxb7HlddCA5XPqxsfIeIF9EuoRlC9JDwXZtp_Md3Di-qZ_wCG7AdOFxv8WufxjXEjU95noONve_fLtBxa7sEvw71HL0-3C9mT8X87-Pz7G5eNJyyoQBC2ilXyrZSSu0EaGunriYttzW1DlruqCVNa6VmqimZUNTWvKlLoUBaJ_k5ut3fXcfwMUIazMqnBrrO9hDGZFg2IbVmfJrRm2_oMoyxz98Zpko2JRkkmaJ7qokhpQitWUefjWwNJWYn3-zkm518c5CfM9eHy2O9AveV-LSdgas94AHga62FEiXV_D-R_Ihs</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Bui, Lien A.</creator><creator>Yeboah, Dacosta</creator><creator>Steinmeister, Louis</creator><creator>Azizi, Sima</creator><creator>Hier, Daniel B.</creator><creator>Wunsch, Donald C.</creator><creator>Olbricht, Gayla R.</creator><creator>Obafemi-Ajayi, Tayo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1213-2241</orcidid><orcidid>https://orcid.org/0000-0002-0155-9733</orcidid><orcidid>https://orcid.org/0000-0003-3204-4190</orcidid><orcidid>https://orcid.org/0000-0002-6179-0793</orcidid><orcidid>https://orcid.org/0000-0002-9726-9051</orcidid></search><sort><creationdate>202205</creationdate><title>Heterogeneity in Blood Biomarker Trajectories After Mild TBI Revealed by Unsupervised Learning</title><author>Bui, Lien A. ; Yeboah, Dacosta ; Steinmeister, Louis ; Azizi, Sima ; Hier, Daniel B. ; Wunsch, Donald C. ; Olbricht, Gayla R. ; Obafemi-Ajayi, Tayo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-e00f8366af5559d4e9aa8db0f3ab1adef3d1a0cfa5926c72461ab3cb746e5ad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amnesia</topic><topic>Athletes</topic><topic>Biological system modeling</topic><topic>Biomarkers</topic><topic>Blood</topic><topic>Brain Concussion - diagnosis</topic><topic>Clustering</topic><topic>Cognition</topic><topic>Concussion</topic><topic>concussions</topic><topic>Data recovery</topic><topic>GFAP</topic><topic>Glial fibrillary acidic protein</topic><topic>Head injuries</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Injuries</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>NF-L</topic><topic>Precision medicine</topic><topic>predictive modeling</topic><topic>Proteins</topic><topic>Sports</topic><topic>Stability analysis</topic><topic>Stability augmentation</topic><topic>statistical analysis</topic><topic>Statistical methods</topic><topic>tau</topic><topic>Trajectory</topic><topic>Traumatic brain injury</topic><topic>UCH-L1</topic><topic>Unsupervised learning</topic><topic>Unsupervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bui, Lien A.</creatorcontrib><creatorcontrib>Yeboah, Dacosta</creatorcontrib><creatorcontrib>Steinmeister, Louis</creatorcontrib><creatorcontrib>Azizi, Sima</creatorcontrib><creatorcontrib>Hier, Daniel B.</creatorcontrib><creatorcontrib>Wunsch, Donald C.</creatorcontrib><creatorcontrib>Olbricht, Gayla R.</creatorcontrib><creatorcontrib>Obafemi-Ajayi, Tayo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bui, Lien A.</au><au>Yeboah, Dacosta</au><au>Steinmeister, Louis</au><au>Azizi, Sima</au><au>Hier, Daniel B.</au><au>Wunsch, Donald C.</au><au>Olbricht, Gayla R.</au><au>Obafemi-Ajayi, Tayo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneity in Blood Biomarker Trajectories After Mild TBI Revealed by Unsupervised Learning</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2022-05</date><risdate>2022</risdate><volume>19</volume><issue>3</issue><spage>1365</spage><epage>1378</epage><pages>1365-1378</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Concussions, also known as mild traumatic brain injury (mTBI), are a growing health challenge. Approximately four million concussions are diagnosed annually in the United States. Concussion is a heterogeneous disorder in causation, symptoms, and outcome making precision medicine approaches to this disorder important. Persistent disabling symptoms sometimes delay recovery in a difficult to predict subset of mTBI patients. Despite abundant data, clinicians need better tools to assess and predict recovery. Data-driven decision support holds promise for accurate clinical prediction tools for mTBI due to its ability to identify hidden correlations in complex datasets. We apply a Locality-Sensitive Hashing model enhanced by varied statistical methods to cluster blood biomarker level trajectories acquired over multiple time points. Additional features derived from demographics, injury context, neurocognitive assessment, and postural stability assessment are extracted using an autoencoder to augment the model. The data, obtained from FITBIR, consisted of 301 concussed subjects (athletes and cadets). Clustering identified 11 different biomarker trajectories. Two of the trajectories (rising GFAP and rising NF-L) were associated with a greater risk of loss of consciousness or post-traumatic amnesia at onset. The ability to cluster blood biomarker trajectories enhances the possibilities for precision medicine approaches to mTBI.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34166200</pmid><doi>10.1109/TCBB.2021.3091972</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1213-2241</orcidid><orcidid>https://orcid.org/0000-0002-0155-9733</orcidid><orcidid>https://orcid.org/0000-0003-3204-4190</orcidid><orcidid>https://orcid.org/0000-0002-6179-0793</orcidid><orcidid>https://orcid.org/0000-0002-9726-9051</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2022-05, Vol.19 (3), p.1365-1378
issn 1545-5963
1557-9964
language eng
recordid cdi_proquest_journals_2672805590
source IEEE Electronic Library (IEL)
subjects Amnesia
Athletes
Biological system modeling
Biomarkers
Blood
Brain Concussion - diagnosis
Clustering
Cognition
Concussion
concussions
Data recovery
GFAP
Glial fibrillary acidic protein
Head injuries
Heterogeneity
Humans
Injuries
Mathematical models
Medicine
NF-L
Precision medicine
predictive modeling
Proteins
Sports
Stability analysis
Stability augmentation
statistical analysis
Statistical methods
tau
Trajectory
Traumatic brain injury
UCH-L1
Unsupervised learning
Unsupervised Machine Learning
title Heterogeneity in Blood Biomarker Trajectories After Mild TBI Revealed by Unsupervised Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneity%20in%20Blood%20Biomarker%20Trajectories%20After%20Mild%20TBI%20Revealed%20by%20Unsupervised%20Learning&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Bui,%20Lien%20A.&rft.date=2022-05&rft.volume=19&rft.issue=3&rft.spage=1365&rft.epage=1378&rft.pages=1365-1378&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2021.3091972&rft_dat=%3Cproquest_RIE%3E2545599238%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672805590&rft_id=info:pmid/34166200&rft_ieee_id=9464719&rfr_iscdi=true