Parameters Simulation and Optimization of Flying Net for UAVs Interception
As to the countermeasures of low, small and slow "black flying" UAV, the flying net launching technology scheme for anti-UAV based on reluctance electromagnetic launcher was proposed, and the working principle of the system was analyzed. For the nonlinear large deformation problem of flyin...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.56668-56676 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56676 |
---|---|
container_issue | |
container_start_page | 56668 |
container_title | IEEE access |
container_volume | 10 |
creator | Xiang, Hongjun Liang, Chunyan Qiao, Zhiming Yuan, Xichao Cao, Genrong |
description | As to the countermeasures of low, small and slow "black flying" UAV, the flying net launching technology scheme for anti-UAV based on reluctance electromagnetic launcher was proposed, and the working principle of the system was analyzed. For the nonlinear large deformation problem of flying net, the default beam element model and mechanical model of flying net were constructed, and the simulation analysis was carried out. Based on the orthogonal experimental method, the optimization analysis of flying net parameters was carried out, and based on the range analysis results, the sensitivity of armature initial velocity, armature mass and initial angle to the effective distance of flying net was obtained, as well as the optimization parameter combination. The flying net launching experimental system was established and validation experiments were carried out. The results show that the reluctance electromagnetic launching technology can be used to launch the flying net, and the flying net can effectively intercept the UAV. Furthermore, the initial angle of the armature has the greatest influence on the effective distance of the flying net, while the velocity of the armature has the least influence. |
doi_str_mv | 10.1109/ACCESS.2022.3177902 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672805237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9781814</ieee_id><doaj_id>oai_doaj_org_article_21272032372f40ccb2bce02f55d4d47b</doaj_id><sourcerecordid>2672805237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2732-f6be51433c8ee9531330d972825b62c27c1ec8fcb9005929fb1f02ffd5c7d8ec3</originalsourceid><addsrcrecordid>eNpNkVFrwjAUhcvYYLL5C3wp7FmX3JimeRTRzSFz4NxrSNMbidjGpfXB_frFVWR5STic79wbTpIMKBlRSuTzZDqdrdcjIAAjRoWQBG6SHtBMDhln2e2_933Sb5odiSePEhe95O1DB11hi6FJ16467nXrfJ3qukxXh9ZV7qcTvE3n-5Ort-k7tqn1Id1Mvpp0UUfS4OHseUzurN432L_cD8lmPvucvg6Xq5fFdLIcGhAMhjYrkNMxYyZHlJxRxkgpBeTAiwyix1A0uTWFJIRLkLagloC1JTeizNGwh2TR5ZZe79QhuEqHk_LaqT_Bh63SoXVmjwooCCAMmAA7JsYUUBiMYZyX43Isipj11GUdgv8-YtOqnT-GOq6vIIs7ER7Z6GKdywTfNAHtdSol6tyB6jpQ5w7UpYNIDTrKIeKVkCKnefz-L1ZhgTk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672805237</pqid></control><display><type>article</type><title>Parameters Simulation and Optimization of Flying Net for UAVs Interception</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xiang, Hongjun ; Liang, Chunyan ; Qiao, Zhiming ; Yuan, Xichao ; Cao, Genrong</creator><creatorcontrib>Xiang, Hongjun ; Liang, Chunyan ; Qiao, Zhiming ; Yuan, Xichao ; Cao, Genrong</creatorcontrib><description>As to the countermeasures of low, small and slow "black flying" UAV, the flying net launching technology scheme for anti-UAV based on reluctance electromagnetic launcher was proposed, and the working principle of the system was analyzed. For the nonlinear large deformation problem of flying net, the default beam element model and mechanical model of flying net were constructed, and the simulation analysis was carried out. Based on the orthogonal experimental method, the optimization analysis of flying net parameters was carried out, and based on the range analysis results, the sensitivity of armature initial velocity, armature mass and initial angle to the effective distance of flying net was obtained, as well as the optimization parameter combination. The flying net launching experimental system was established and validation experiments were carried out. The results show that the reluctance electromagnetic launching technology can be used to launch the flying net, and the flying net can effectively intercept the UAV. Furthermore, the initial angle of the armature has the greatest influence on the effective distance of the flying net, while the velocity of the armature has the least influence.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3177902</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; anti-UAV ; Deformable models ; Electromagnetics ; Finite element method ; flying net ; Force ; Interception ; Mathematical models ; Optimization ; Parameters ; parameters optimization ; Reluctance ; Reluctance electromagnetic launcher ; Strain</subject><ispartof>IEEE access, 2022, Vol.10, p.56668-56676</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2732-f6be51433c8ee9531330d972825b62c27c1ec8fcb9005929fb1f02ffd5c7d8ec3</cites><orcidid>0000-0002-6445-5229 ; 0000-0002-9122-4151 ; 0000-0002-1091-1698 ; 0000-0001-8446-159X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9781814$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Xiang, Hongjun</creatorcontrib><creatorcontrib>Liang, Chunyan</creatorcontrib><creatorcontrib>Qiao, Zhiming</creatorcontrib><creatorcontrib>Yuan, Xichao</creatorcontrib><creatorcontrib>Cao, Genrong</creatorcontrib><title>Parameters Simulation and Optimization of Flying Net for UAVs Interception</title><title>IEEE access</title><addtitle>Access</addtitle><description>As to the countermeasures of low, small and slow "black flying" UAV, the flying net launching technology scheme for anti-UAV based on reluctance electromagnetic launcher was proposed, and the working principle of the system was analyzed. For the nonlinear large deformation problem of flying net, the default beam element model and mechanical model of flying net were constructed, and the simulation analysis was carried out. Based on the orthogonal experimental method, the optimization analysis of flying net parameters was carried out, and based on the range analysis results, the sensitivity of armature initial velocity, armature mass and initial angle to the effective distance of flying net was obtained, as well as the optimization parameter combination. The flying net launching experimental system was established and validation experiments were carried out. The results show that the reluctance electromagnetic launching technology can be used to launch the flying net, and the flying net can effectively intercept the UAV. Furthermore, the initial angle of the armature has the greatest influence on the effective distance of the flying net, while the velocity of the armature has the least influence.</description><subject>Analytical models</subject><subject>anti-UAV</subject><subject>Deformable models</subject><subject>Electromagnetics</subject><subject>Finite element method</subject><subject>flying net</subject><subject>Force</subject><subject>Interception</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameters</subject><subject>parameters optimization</subject><subject>Reluctance</subject><subject>Reluctance electromagnetic launcher</subject><subject>Strain</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFrwjAUhcvYYLL5C3wp7FmX3JimeRTRzSFz4NxrSNMbidjGpfXB_frFVWR5STic79wbTpIMKBlRSuTzZDqdrdcjIAAjRoWQBG6SHtBMDhln2e2_933Sb5odiSePEhe95O1DB11hi6FJ16467nXrfJ3qukxXh9ZV7qcTvE3n-5Ort-k7tqn1Id1Mvpp0UUfS4OHseUzurN432L_cD8lmPvucvg6Xq5fFdLIcGhAMhjYrkNMxYyZHlJxRxkgpBeTAiwyix1A0uTWFJIRLkLagloC1JTeizNGwh2TR5ZZe79QhuEqHk_LaqT_Bh63SoXVmjwooCCAMmAA7JsYUUBiMYZyX43Isipj11GUdgv8-YtOqnT-GOq6vIIs7ER7Z6GKdywTfNAHtdSol6tyB6jpQ5w7UpYNIDTrKIeKVkCKnefz-L1ZhgTk</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Xiang, Hongjun</creator><creator>Liang, Chunyan</creator><creator>Qiao, Zhiming</creator><creator>Yuan, Xichao</creator><creator>Cao, Genrong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6445-5229</orcidid><orcidid>https://orcid.org/0000-0002-9122-4151</orcidid><orcidid>https://orcid.org/0000-0002-1091-1698</orcidid><orcidid>https://orcid.org/0000-0001-8446-159X</orcidid></search><sort><creationdate>2022</creationdate><title>Parameters Simulation and Optimization of Flying Net for UAVs Interception</title><author>Xiang, Hongjun ; Liang, Chunyan ; Qiao, Zhiming ; Yuan, Xichao ; Cao, Genrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2732-f6be51433c8ee9531330d972825b62c27c1ec8fcb9005929fb1f02ffd5c7d8ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical models</topic><topic>anti-UAV</topic><topic>Deformable models</topic><topic>Electromagnetics</topic><topic>Finite element method</topic><topic>flying net</topic><topic>Force</topic><topic>Interception</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameters</topic><topic>parameters optimization</topic><topic>Reluctance</topic><topic>Reluctance electromagnetic launcher</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Hongjun</creatorcontrib><creatorcontrib>Liang, Chunyan</creatorcontrib><creatorcontrib>Qiao, Zhiming</creatorcontrib><creatorcontrib>Yuan, Xichao</creatorcontrib><creatorcontrib>Cao, Genrong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Hongjun</au><au>Liang, Chunyan</au><au>Qiao, Zhiming</au><au>Yuan, Xichao</au><au>Cao, Genrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameters Simulation and Optimization of Flying Net for UAVs Interception</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>56668</spage><epage>56676</epage><pages>56668-56676</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As to the countermeasures of low, small and slow "black flying" UAV, the flying net launching technology scheme for anti-UAV based on reluctance electromagnetic launcher was proposed, and the working principle of the system was analyzed. For the nonlinear large deformation problem of flying net, the default beam element model and mechanical model of flying net were constructed, and the simulation analysis was carried out. Based on the orthogonal experimental method, the optimization analysis of flying net parameters was carried out, and based on the range analysis results, the sensitivity of armature initial velocity, armature mass and initial angle to the effective distance of flying net was obtained, as well as the optimization parameter combination. The flying net launching experimental system was established and validation experiments were carried out. The results show that the reluctance electromagnetic launching technology can be used to launch the flying net, and the flying net can effectively intercept the UAV. Furthermore, the initial angle of the armature has the greatest influence on the effective distance of the flying net, while the velocity of the armature has the least influence.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3177902</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6445-5229</orcidid><orcidid>https://orcid.org/0000-0002-9122-4151</orcidid><orcidid>https://orcid.org/0000-0002-1091-1698</orcidid><orcidid>https://orcid.org/0000-0001-8446-159X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.56668-56676 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2672805237 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Analytical models anti-UAV Deformable models Electromagnetics Finite element method flying net Force Interception Mathematical models Optimization Parameters parameters optimization Reluctance Reluctance electromagnetic launcher Strain |
title | Parameters Simulation and Optimization of Flying Net for UAVs Interception |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameters%20Simulation%20and%20Optimization%20of%20Flying%20Net%20for%20UAVs%20Interception&rft.jtitle=IEEE%20access&rft.au=Xiang,%20Hongjun&rft.date=2022&rft.volume=10&rft.spage=56668&rft.epage=56676&rft.pages=56668-56676&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3177902&rft_dat=%3Cproquest_cross%3E2672805237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672805237&rft_id=info:pmid/&rft_ieee_id=9781814&rft_doaj_id=oai_doaj_org_article_21272032372f40ccb2bce02f55d4d47b&rfr_iscdi=true |