Parameters Simulation and Optimization of Flying Net for UAVs Interception

As to the countermeasures of low, small and slow "black flying" UAV, the flying net launching technology scheme for anti-UAV based on reluctance electromagnetic launcher was proposed, and the working principle of the system was analyzed. For the nonlinear large deformation problem of flyin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.56668-56676
Hauptverfasser: Xiang, Hongjun, Liang, Chunyan, Qiao, Zhiming, Yuan, Xichao, Cao, Genrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56676
container_issue
container_start_page 56668
container_title IEEE access
container_volume 10
creator Xiang, Hongjun
Liang, Chunyan
Qiao, Zhiming
Yuan, Xichao
Cao, Genrong
description As to the countermeasures of low, small and slow "black flying" UAV, the flying net launching technology scheme for anti-UAV based on reluctance electromagnetic launcher was proposed, and the working principle of the system was analyzed. For the nonlinear large deformation problem of flying net, the default beam element model and mechanical model of flying net were constructed, and the simulation analysis was carried out. Based on the orthogonal experimental method, the optimization analysis of flying net parameters was carried out, and based on the range analysis results, the sensitivity of armature initial velocity, armature mass and initial angle to the effective distance of flying net was obtained, as well as the optimization parameter combination. The flying net launching experimental system was established and validation experiments were carried out. The results show that the reluctance electromagnetic launching technology can be used to launch the flying net, and the flying net can effectively intercept the UAV. Furthermore, the initial angle of the armature has the greatest influence on the effective distance of the flying net, while the velocity of the armature has the least influence.
doi_str_mv 10.1109/ACCESS.2022.3177902
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672805237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9781814</ieee_id><doaj_id>oai_doaj_org_article_21272032372f40ccb2bce02f55d4d47b</doaj_id><sourcerecordid>2672805237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2732-f6be51433c8ee9531330d972825b62c27c1ec8fcb9005929fb1f02ffd5c7d8ec3</originalsourceid><addsrcrecordid>eNpNkVFrwjAUhcvYYLL5C3wp7FmX3JimeRTRzSFz4NxrSNMbidjGpfXB_frFVWR5STic79wbTpIMKBlRSuTzZDqdrdcjIAAjRoWQBG6SHtBMDhln2e2_933Sb5odiSePEhe95O1DB11hi6FJ16467nXrfJ3qukxXh9ZV7qcTvE3n-5Ort-k7tqn1Id1Mvpp0UUfS4OHseUzurN432L_cD8lmPvucvg6Xq5fFdLIcGhAMhjYrkNMxYyZHlJxRxkgpBeTAiwyix1A0uTWFJIRLkLagloC1JTeizNGwh2TR5ZZe79QhuEqHk_LaqT_Bh63SoXVmjwooCCAMmAA7JsYUUBiMYZyX43Isipj11GUdgv8-YtOqnT-GOq6vIIs7ER7Z6GKdywTfNAHtdSol6tyB6jpQ5w7UpYNIDTrKIeKVkCKnefz-L1ZhgTk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672805237</pqid></control><display><type>article</type><title>Parameters Simulation and Optimization of Flying Net for UAVs Interception</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xiang, Hongjun ; Liang, Chunyan ; Qiao, Zhiming ; Yuan, Xichao ; Cao, Genrong</creator><creatorcontrib>Xiang, Hongjun ; Liang, Chunyan ; Qiao, Zhiming ; Yuan, Xichao ; Cao, Genrong</creatorcontrib><description>As to the countermeasures of low, small and slow "black flying" UAV, the flying net launching technology scheme for anti-UAV based on reluctance electromagnetic launcher was proposed, and the working principle of the system was analyzed. For the nonlinear large deformation problem of flying net, the default beam element model and mechanical model of flying net were constructed, and the simulation analysis was carried out. Based on the orthogonal experimental method, the optimization analysis of flying net parameters was carried out, and based on the range analysis results, the sensitivity of armature initial velocity, armature mass and initial angle to the effective distance of flying net was obtained, as well as the optimization parameter combination. The flying net launching experimental system was established and validation experiments were carried out. The results show that the reluctance electromagnetic launching technology can be used to launch the flying net, and the flying net can effectively intercept the UAV. Furthermore, the initial angle of the armature has the greatest influence on the effective distance of the flying net, while the velocity of the armature has the least influence.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3177902</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; anti-UAV ; Deformable models ; Electromagnetics ; Finite element method ; flying net ; Force ; Interception ; Mathematical models ; Optimization ; Parameters ; parameters optimization ; Reluctance ; Reluctance electromagnetic launcher ; Strain</subject><ispartof>IEEE access, 2022, Vol.10, p.56668-56676</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2732-f6be51433c8ee9531330d972825b62c27c1ec8fcb9005929fb1f02ffd5c7d8ec3</cites><orcidid>0000-0002-6445-5229 ; 0000-0002-9122-4151 ; 0000-0002-1091-1698 ; 0000-0001-8446-159X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9781814$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Xiang, Hongjun</creatorcontrib><creatorcontrib>Liang, Chunyan</creatorcontrib><creatorcontrib>Qiao, Zhiming</creatorcontrib><creatorcontrib>Yuan, Xichao</creatorcontrib><creatorcontrib>Cao, Genrong</creatorcontrib><title>Parameters Simulation and Optimization of Flying Net for UAVs Interception</title><title>IEEE access</title><addtitle>Access</addtitle><description>As to the countermeasures of low, small and slow "black flying" UAV, the flying net launching technology scheme for anti-UAV based on reluctance electromagnetic launcher was proposed, and the working principle of the system was analyzed. For the nonlinear large deformation problem of flying net, the default beam element model and mechanical model of flying net were constructed, and the simulation analysis was carried out. Based on the orthogonal experimental method, the optimization analysis of flying net parameters was carried out, and based on the range analysis results, the sensitivity of armature initial velocity, armature mass and initial angle to the effective distance of flying net was obtained, as well as the optimization parameter combination. The flying net launching experimental system was established and validation experiments were carried out. The results show that the reluctance electromagnetic launching technology can be used to launch the flying net, and the flying net can effectively intercept the UAV. Furthermore, the initial angle of the armature has the greatest influence on the effective distance of the flying net, while the velocity of the armature has the least influence.</description><subject>Analytical models</subject><subject>anti-UAV</subject><subject>Deformable models</subject><subject>Electromagnetics</subject><subject>Finite element method</subject><subject>flying net</subject><subject>Force</subject><subject>Interception</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameters</subject><subject>parameters optimization</subject><subject>Reluctance</subject><subject>Reluctance electromagnetic launcher</subject><subject>Strain</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFrwjAUhcvYYLL5C3wp7FmX3JimeRTRzSFz4NxrSNMbidjGpfXB_frFVWR5STic79wbTpIMKBlRSuTzZDqdrdcjIAAjRoWQBG6SHtBMDhln2e2_933Sb5odiSePEhe95O1DB11hi6FJ16467nXrfJ3qukxXh9ZV7qcTvE3n-5Ort-k7tqn1Id1Mvpp0UUfS4OHseUzurN432L_cD8lmPvucvg6Xq5fFdLIcGhAMhjYrkNMxYyZHlJxRxkgpBeTAiwyix1A0uTWFJIRLkLagloC1JTeizNGwh2TR5ZZe79QhuEqHk_LaqT_Bh63SoXVmjwooCCAMmAA7JsYUUBiMYZyX43Isipj11GUdgv8-YtOqnT-GOq6vIIs7ER7Z6GKdywTfNAHtdSol6tyB6jpQ5w7UpYNIDTrKIeKVkCKnefz-L1ZhgTk</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Xiang, Hongjun</creator><creator>Liang, Chunyan</creator><creator>Qiao, Zhiming</creator><creator>Yuan, Xichao</creator><creator>Cao, Genrong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6445-5229</orcidid><orcidid>https://orcid.org/0000-0002-9122-4151</orcidid><orcidid>https://orcid.org/0000-0002-1091-1698</orcidid><orcidid>https://orcid.org/0000-0001-8446-159X</orcidid></search><sort><creationdate>2022</creationdate><title>Parameters Simulation and Optimization of Flying Net for UAVs Interception</title><author>Xiang, Hongjun ; Liang, Chunyan ; Qiao, Zhiming ; Yuan, Xichao ; Cao, Genrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2732-f6be51433c8ee9531330d972825b62c27c1ec8fcb9005929fb1f02ffd5c7d8ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical models</topic><topic>anti-UAV</topic><topic>Deformable models</topic><topic>Electromagnetics</topic><topic>Finite element method</topic><topic>flying net</topic><topic>Force</topic><topic>Interception</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameters</topic><topic>parameters optimization</topic><topic>Reluctance</topic><topic>Reluctance electromagnetic launcher</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Hongjun</creatorcontrib><creatorcontrib>Liang, Chunyan</creatorcontrib><creatorcontrib>Qiao, Zhiming</creatorcontrib><creatorcontrib>Yuan, Xichao</creatorcontrib><creatorcontrib>Cao, Genrong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Hongjun</au><au>Liang, Chunyan</au><au>Qiao, Zhiming</au><au>Yuan, Xichao</au><au>Cao, Genrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameters Simulation and Optimization of Flying Net for UAVs Interception</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>56668</spage><epage>56676</epage><pages>56668-56676</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As to the countermeasures of low, small and slow "black flying" UAV, the flying net launching technology scheme for anti-UAV based on reluctance electromagnetic launcher was proposed, and the working principle of the system was analyzed. For the nonlinear large deformation problem of flying net, the default beam element model and mechanical model of flying net were constructed, and the simulation analysis was carried out. Based on the orthogonal experimental method, the optimization analysis of flying net parameters was carried out, and based on the range analysis results, the sensitivity of armature initial velocity, armature mass and initial angle to the effective distance of flying net was obtained, as well as the optimization parameter combination. The flying net launching experimental system was established and validation experiments were carried out. The results show that the reluctance electromagnetic launching technology can be used to launch the flying net, and the flying net can effectively intercept the UAV. Furthermore, the initial angle of the armature has the greatest influence on the effective distance of the flying net, while the velocity of the armature has the least influence.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3177902</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6445-5229</orcidid><orcidid>https://orcid.org/0000-0002-9122-4151</orcidid><orcidid>https://orcid.org/0000-0002-1091-1698</orcidid><orcidid>https://orcid.org/0000-0001-8446-159X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.56668-56676
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2672805237
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Analytical models
anti-UAV
Deformable models
Electromagnetics
Finite element method
flying net
Force
Interception
Mathematical models
Optimization
Parameters
parameters optimization
Reluctance
Reluctance electromagnetic launcher
Strain
title Parameters Simulation and Optimization of Flying Net for UAVs Interception
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameters%20Simulation%20and%20Optimization%20of%20Flying%20Net%20for%20UAVs%20Interception&rft.jtitle=IEEE%20access&rft.au=Xiang,%20Hongjun&rft.date=2022&rft.volume=10&rft.spage=56668&rft.epage=56676&rft.pages=56668-56676&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3177902&rft_dat=%3Cproquest_cross%3E2672805237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672805237&rft_id=info:pmid/&rft_ieee_id=9781814&rft_doaj_id=oai_doaj_org_article_21272032372f40ccb2bce02f55d4d47b&rfr_iscdi=true