Evidence for chromium, cobalt and molybdenum volatilisations during high temperature oxidation of Co-27Cr-6Mo Alloy
A Co-27Cr-6Mo alloy was oxidised in pure O2 between 800 and 1000 °C for durations up to 96 h. The flow rate was varied between 2 and 5 cm.s–1. In these conditions, volatilisations of chromium, cobalt and molybdenum were observed. The chromium volatilisation values were in good agreement with calcula...
Gespeichert in:
Veröffentlicht in: | Corrosion science 2022-07, Vol.202, p.110285, Article 110285 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110285 |
container_title | Corrosion science |
container_volume | 202 |
creator | Wongpromrat, Patthranit Galerie, Alain Thublaor, Thammaporn Chandra-ambhorn, Walairat Ponpo, Phisan Watasuntornpong, Pongpun Yamanaka, Kenta Chiba, Akihiko Tunthawiroon, Phacharaphon Siripongsakul, Thamrongsin Chandra-ambhorn, Somrerk Ruangtrakoon, Natthawut |
description | A Co-27Cr-6Mo alloy was oxidised in pure O2 between 800 and 1000 °C for durations up to 96 h. The flow rate was varied between 2 and 5 cm.s–1. In these conditions, volatilisations of chromium, cobalt and molybdenum were observed. The chromium volatilisation values were in good agreement with calculations assuming (CrO3)g volatilisation limited by diffusion in the gas boundary layer. On the contrary, the measured flux of evaporated Co was higher than the calculated Co volatilisation flux from the metallic Co. The theoretical relation between the solid Co particle size and its vapour pressure was suggested to help explaining such difference.
•Volatilisations of Cr, Co and Mo from Co-27Cr-6Mo alloy were examined in dry O2.•A strong influence of O2 flow rate on Cr volatilisation was observed.•Cr volatilisation from Co-27Cr-6Mo alloy is not neglectable in dry atmosphere at temperatures lower than 1000 °C.•Co volatilisation was observed, higher than predicted by classical thermodynamic calculation. |
doi_str_mv | 10.1016/j.corsci.2022.110285 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672767252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X22002037</els_id><sourcerecordid>2672767252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-79608533a720e920c023ac546f340cb6eaaf50107547beebfd6e82eeed590e563</originalsourceid><addsrcrecordid>eNp9kEtLxDAQgIMouD7-gYeAV1unaZu2F2Ep6wNWvCh4C2k63U1pmzVpF_ffm7WePcwMDN_MMB8hNxGEEUT8vg2VsU7pkAFjYRQBy9MTsojyrAggKfgpWQBEEBRx_nlOLpxrAYD5zoK41V7XOCikjbFUba3p9dTfUWUq2Y1UDjXtTXeoPDP1dG86OepOO5_N4Gg9WT1s6FZvtnTEfodWjpNFar51_YtQ09DSBCwrbcBfDV12nTlckbNGdg6v_-ol-XhcvZfPwfrt6aVcrgPFeDIGWcEhT-NYZgywYKCAxVKlCW_iBFTFUcom9U9kaZJViFVTc8wZItZpAZjy-JLcznt31nxN6EbRmskO_qRgPGOZj5R5KpkpZY1zFhuxs7qX9iAiEEe9ohWzXnHUK2a9fuxhHkP_wV6jFZ44iqy1RTWK2uj_F_wAGSCGGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672767252</pqid></control><display><type>article</type><title>Evidence for chromium, cobalt and molybdenum volatilisations during high temperature oxidation of Co-27Cr-6Mo Alloy</title><source>Elsevier ScienceDirect Journals</source><creator>Wongpromrat, Patthranit ; Galerie, Alain ; Thublaor, Thammaporn ; Chandra-ambhorn, Walairat ; Ponpo, Phisan ; Watasuntornpong, Pongpun ; Yamanaka, Kenta ; Chiba, Akihiko ; Tunthawiroon, Phacharaphon ; Siripongsakul, Thamrongsin ; Chandra-ambhorn, Somrerk ; Ruangtrakoon, Natthawut</creator><creatorcontrib>Wongpromrat, Patthranit ; Galerie, Alain ; Thublaor, Thammaporn ; Chandra-ambhorn, Walairat ; Ponpo, Phisan ; Watasuntornpong, Pongpun ; Yamanaka, Kenta ; Chiba, Akihiko ; Tunthawiroon, Phacharaphon ; Siripongsakul, Thamrongsin ; Chandra-ambhorn, Somrerk ; Ruangtrakoon, Natthawut</creatorcontrib><description>A Co-27Cr-6Mo alloy was oxidised in pure O2 between 800 and 1000 °C for durations up to 96 h. The flow rate was varied between 2 and 5 cm.s–1. In these conditions, volatilisations of chromium, cobalt and molybdenum were observed. The chromium volatilisation values were in good agreement with calculations assuming (CrO3)g volatilisation limited by diffusion in the gas boundary layer. On the contrary, the measured flux of evaporated Co was higher than the calculated Co volatilisation flux from the metallic Co. The theoretical relation between the solid Co particle size and its vapour pressure was suggested to help explaining such difference.
•Volatilisations of Cr, Co and Mo from Co-27Cr-6Mo alloy were examined in dry O2.•A strong influence of O2 flow rate on Cr volatilisation was observed.•Cr volatilisation from Co-27Cr-6Mo alloy is not neglectable in dry atmosphere at temperatures lower than 1000 °C.•Co volatilisation was observed, higher than predicted by classical thermodynamic calculation.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2022.110285</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Boundary layers ; Chromium ; Co volatilisation ; Cobalt base alloys ; CoCrMo alloy ; Cr volatilisation ; Diffusion layers ; Flow velocity ; High temperature ; High temperature oxidation ; Mathematical analysis ; Molybdenum ; Oxidation ; Vapor pressure ; Vaporization</subject><ispartof>Corrosion science, 2022-07, Vol.202, p.110285, Article 110285</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-79608533a720e920c023ac546f340cb6eaaf50107547beebfd6e82eeed590e563</citedby><cites>FETCH-LOGICAL-c264t-79608533a720e920c023ac546f340cb6eaaf50107547beebfd6e82eeed590e563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X22002037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wongpromrat, Patthranit</creatorcontrib><creatorcontrib>Galerie, Alain</creatorcontrib><creatorcontrib>Thublaor, Thammaporn</creatorcontrib><creatorcontrib>Chandra-ambhorn, Walairat</creatorcontrib><creatorcontrib>Ponpo, Phisan</creatorcontrib><creatorcontrib>Watasuntornpong, Pongpun</creatorcontrib><creatorcontrib>Yamanaka, Kenta</creatorcontrib><creatorcontrib>Chiba, Akihiko</creatorcontrib><creatorcontrib>Tunthawiroon, Phacharaphon</creatorcontrib><creatorcontrib>Siripongsakul, Thamrongsin</creatorcontrib><creatorcontrib>Chandra-ambhorn, Somrerk</creatorcontrib><creatorcontrib>Ruangtrakoon, Natthawut</creatorcontrib><title>Evidence for chromium, cobalt and molybdenum volatilisations during high temperature oxidation of Co-27Cr-6Mo Alloy</title><title>Corrosion science</title><description>A Co-27Cr-6Mo alloy was oxidised in pure O2 between 800 and 1000 °C for durations up to 96 h. The flow rate was varied between 2 and 5 cm.s–1. In these conditions, volatilisations of chromium, cobalt and molybdenum were observed. The chromium volatilisation values were in good agreement with calculations assuming (CrO3)g volatilisation limited by diffusion in the gas boundary layer. On the contrary, the measured flux of evaporated Co was higher than the calculated Co volatilisation flux from the metallic Co. The theoretical relation between the solid Co particle size and its vapour pressure was suggested to help explaining such difference.
•Volatilisations of Cr, Co and Mo from Co-27Cr-6Mo alloy were examined in dry O2.•A strong influence of O2 flow rate on Cr volatilisation was observed.•Cr volatilisation from Co-27Cr-6Mo alloy is not neglectable in dry atmosphere at temperatures lower than 1000 °C.•Co volatilisation was observed, higher than predicted by classical thermodynamic calculation.</description><subject>Boundary layers</subject><subject>Chromium</subject><subject>Co volatilisation</subject><subject>Cobalt base alloys</subject><subject>CoCrMo alloy</subject><subject>Cr volatilisation</subject><subject>Diffusion layers</subject><subject>Flow velocity</subject><subject>High temperature</subject><subject>High temperature oxidation</subject><subject>Mathematical analysis</subject><subject>Molybdenum</subject><subject>Oxidation</subject><subject>Vapor pressure</subject><subject>Vaporization</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQgIMouD7-gYeAV1unaZu2F2Ep6wNWvCh4C2k63U1pmzVpF_ffm7WePcwMDN_MMB8hNxGEEUT8vg2VsU7pkAFjYRQBy9MTsojyrAggKfgpWQBEEBRx_nlOLpxrAYD5zoK41V7XOCikjbFUba3p9dTfUWUq2Y1UDjXtTXeoPDP1dG86OepOO5_N4Gg9WT1s6FZvtnTEfodWjpNFar51_YtQ09DSBCwrbcBfDV12nTlckbNGdg6v_-ol-XhcvZfPwfrt6aVcrgPFeDIGWcEhT-NYZgywYKCAxVKlCW_iBFTFUcom9U9kaZJViFVTc8wZItZpAZjy-JLcznt31nxN6EbRmskO_qRgPGOZj5R5KpkpZY1zFhuxs7qX9iAiEEe9ohWzXnHUK2a9fuxhHkP_wV6jFZ44iqy1RTWK2uj_F_wAGSCGGA</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Wongpromrat, Patthranit</creator><creator>Galerie, Alain</creator><creator>Thublaor, Thammaporn</creator><creator>Chandra-ambhorn, Walairat</creator><creator>Ponpo, Phisan</creator><creator>Watasuntornpong, Pongpun</creator><creator>Yamanaka, Kenta</creator><creator>Chiba, Akihiko</creator><creator>Tunthawiroon, Phacharaphon</creator><creator>Siripongsakul, Thamrongsin</creator><creator>Chandra-ambhorn, Somrerk</creator><creator>Ruangtrakoon, Natthawut</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20220701</creationdate><title>Evidence for chromium, cobalt and molybdenum volatilisations during high temperature oxidation of Co-27Cr-6Mo Alloy</title><author>Wongpromrat, Patthranit ; Galerie, Alain ; Thublaor, Thammaporn ; Chandra-ambhorn, Walairat ; Ponpo, Phisan ; Watasuntornpong, Pongpun ; Yamanaka, Kenta ; Chiba, Akihiko ; Tunthawiroon, Phacharaphon ; Siripongsakul, Thamrongsin ; Chandra-ambhorn, Somrerk ; Ruangtrakoon, Natthawut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-79608533a720e920c023ac546f340cb6eaaf50107547beebfd6e82eeed590e563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary layers</topic><topic>Chromium</topic><topic>Co volatilisation</topic><topic>Cobalt base alloys</topic><topic>CoCrMo alloy</topic><topic>Cr volatilisation</topic><topic>Diffusion layers</topic><topic>Flow velocity</topic><topic>High temperature</topic><topic>High temperature oxidation</topic><topic>Mathematical analysis</topic><topic>Molybdenum</topic><topic>Oxidation</topic><topic>Vapor pressure</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wongpromrat, Patthranit</creatorcontrib><creatorcontrib>Galerie, Alain</creatorcontrib><creatorcontrib>Thublaor, Thammaporn</creatorcontrib><creatorcontrib>Chandra-ambhorn, Walairat</creatorcontrib><creatorcontrib>Ponpo, Phisan</creatorcontrib><creatorcontrib>Watasuntornpong, Pongpun</creatorcontrib><creatorcontrib>Yamanaka, Kenta</creatorcontrib><creatorcontrib>Chiba, Akihiko</creatorcontrib><creatorcontrib>Tunthawiroon, Phacharaphon</creatorcontrib><creatorcontrib>Siripongsakul, Thamrongsin</creatorcontrib><creatorcontrib>Chandra-ambhorn, Somrerk</creatorcontrib><creatorcontrib>Ruangtrakoon, Natthawut</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wongpromrat, Patthranit</au><au>Galerie, Alain</au><au>Thublaor, Thammaporn</au><au>Chandra-ambhorn, Walairat</au><au>Ponpo, Phisan</au><au>Watasuntornpong, Pongpun</au><au>Yamanaka, Kenta</au><au>Chiba, Akihiko</au><au>Tunthawiroon, Phacharaphon</au><au>Siripongsakul, Thamrongsin</au><au>Chandra-ambhorn, Somrerk</au><au>Ruangtrakoon, Natthawut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for chromium, cobalt and molybdenum volatilisations during high temperature oxidation of Co-27Cr-6Mo Alloy</atitle><jtitle>Corrosion science</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>202</volume><spage>110285</spage><pages>110285-</pages><artnum>110285</artnum><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>A Co-27Cr-6Mo alloy was oxidised in pure O2 between 800 and 1000 °C for durations up to 96 h. The flow rate was varied between 2 and 5 cm.s–1. In these conditions, volatilisations of chromium, cobalt and molybdenum were observed. The chromium volatilisation values were in good agreement with calculations assuming (CrO3)g volatilisation limited by diffusion in the gas boundary layer. On the contrary, the measured flux of evaporated Co was higher than the calculated Co volatilisation flux from the metallic Co. The theoretical relation between the solid Co particle size and its vapour pressure was suggested to help explaining such difference.
•Volatilisations of Cr, Co and Mo from Co-27Cr-6Mo alloy were examined in dry O2.•A strong influence of O2 flow rate on Cr volatilisation was observed.•Cr volatilisation from Co-27Cr-6Mo alloy is not neglectable in dry atmosphere at temperatures lower than 1000 °C.•Co volatilisation was observed, higher than predicted by classical thermodynamic calculation.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2022.110285</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-938X |
ispartof | Corrosion science, 2022-07, Vol.202, p.110285, Article 110285 |
issn | 0010-938X 1879-0496 |
language | eng |
recordid | cdi_proquest_journals_2672767252 |
source | Elsevier ScienceDirect Journals |
subjects | Boundary layers Chromium Co volatilisation Cobalt base alloys CoCrMo alloy Cr volatilisation Diffusion layers Flow velocity High temperature High temperature oxidation Mathematical analysis Molybdenum Oxidation Vapor pressure Vaporization |
title | Evidence for chromium, cobalt and molybdenum volatilisations during high temperature oxidation of Co-27Cr-6Mo Alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20chromium,%20cobalt%20and%20molybdenum%20volatilisations%20during%20high%20temperature%20oxidation%20of%20Co-27Cr-6Mo%20Alloy&rft.jtitle=Corrosion%20science&rft.au=Wongpromrat,%20Patthranit&rft.date=2022-07-01&rft.volume=202&rft.spage=110285&rft.pages=110285-&rft.artnum=110285&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2022.110285&rft_dat=%3Cproquest_cross%3E2672767252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672767252&rft_id=info:pmid/&rft_els_id=S0010938X22002037&rfr_iscdi=true |