Multi-Physical Simulation Toolchain for the Prediction of Acoustic Emissions of Direct Drive Wind Turbines
To address the acoustic behaviour of wind turbines, particularly tonalities, in an early design stage, accurate simulation toolchains have to be developed. In this work a novel simulation approach for the prediction of tonalities of direct drive wind turbines is presented. Comprehensive work is carr...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2022-05, Vol.2265 (4), p.42047 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 42047 |
container_title | Journal of physics. Conference series |
container_volume | 2265 |
creator | Cardaun, Martin Mülder, Christoph Decker, Thomas Dilba, Boris Duda, Tobias Schelenz, Ralf Jacobs, Georg Hameyer, Kay Keuchel, Sören |
description | To address the acoustic behaviour of wind turbines, particularly tonalities, in an early design stage, accurate simulation toolchains have to be developed. In this work a novel simulation approach for the prediction of tonalities of direct drive wind turbines is presented. Comprehensive work is carried out in the fields of electromagnetic force excitation, structural sound transfer and radiation as well as airborne sound propagation. The developed methods are combined to a simulation toolchain to formulate a multi-physical system model of a direct drive wind turbine in order to predict tonal sound behaviour. These methods will be presented and discussed in detail in the course of this work. First, the approach, integrating the electromagnetic airgap forces of the large generator into a multi body simulation model of the mechanical turbine, is explained and validated with test bench measurements. Following, the modeling of the respective mbs is presented which calculates the resulting surface velocities. This model is solved in the time domain to account for the interaction between the external loads that are highly nonlinear and low-frequency and the high-frequency excitation forces of the generator. Subsequently, the methods for calculating the airborne sound emission in the vincinity of the turbine resulting from the surface velocities are discussed. |
doi_str_mv | 10.1088/1742-6596/2265/4/042047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672748378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672748378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-f8d835ad00f41535c82822bb7ba2742edda7393a9bd526d071b4d464e7338a583</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm2apE12OTY_mTjYxMuQJinL6JqatML-va2ViSCYm4RznvMe8gBwmaCbBHEeJ4ziKEsnWYxxlsY0RhQjyo7A6NA5Prw5PwVnIWwRIt1hI7B9bsvGRsvNPlglS7iyu7aUjXUVXDtXqo20FSych83GwKU32qqvpivgVLk2NFbB250NoSuGvjq33qgGzr39MPDNVhquW5_byoRzcFLIMpiL73sMXu9u17OHaPFy_zibLiJFE9JEBdecpFIjVNAkJanimGOc5yyXuPuE0VoyMiFykusUZxqxJKeaZtQwQrhMORmDqyG39u69NaERW9f6qlspcMa6DE5YT7GBUt6F4E0ham930u9FgkQvVvTKRK9P9GIFFYPYbvJ6mLSu_ol-Ws5Wv0FR66KDyR_wfys-AZE6iFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672748378</pqid></control><display><type>article</type><title>Multi-Physical Simulation Toolchain for the Prediction of Acoustic Emissions of Direct Drive Wind Turbines</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cardaun, Martin ; Mülder, Christoph ; Decker, Thomas ; Dilba, Boris ; Duda, Tobias ; Schelenz, Ralf ; Jacobs, Georg ; Hameyer, Kay ; Keuchel, Sören</creator><creatorcontrib>Cardaun, Martin ; Mülder, Christoph ; Decker, Thomas ; Dilba, Boris ; Duda, Tobias ; Schelenz, Ralf ; Jacobs, Georg ; Hameyer, Kay ; Keuchel, Sören</creatorcontrib><description>To address the acoustic behaviour of wind turbines, particularly tonalities, in an early design stage, accurate simulation toolchains have to be developed. In this work a novel simulation approach for the prediction of tonalities of direct drive wind turbines is presented. Comprehensive work is carried out in the fields of electromagnetic force excitation, structural sound transfer and radiation as well as airborne sound propagation. The developed methods are combined to a simulation toolchain to formulate a multi-physical system model of a direct drive wind turbine in order to predict tonal sound behaviour. These methods will be presented and discussed in detail in the course of this work. First, the approach, integrating the electromagnetic airgap forces of the large generator into a multi body simulation model of the mechanical turbine, is explained and validated with test bench measurements. Following, the modeling of the respective mbs is presented which calculates the resulting surface velocities. This model is solved in the time domain to account for the interaction between the external loads that are highly nonlinear and low-frequency and the high-frequency excitation forces of the generator. Subsequently, the methods for calculating the airborne sound emission in the vincinity of the turbine resulting from the surface velocities are discussed.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2265/4/042047</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Acoustic emission ; Electromagnetic forces ; Excitation ; Multibody systems ; Physical simulation ; Physics ; Simulation ; Sound propagation ; Wind turbines</subject><ispartof>Journal of physics. Conference series, 2022-05, Vol.2265 (4), p.42047</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-f8d835ad00f41535c82822bb7ba2742edda7393a9bd526d071b4d464e7338a583</citedby><cites>FETCH-LOGICAL-c413t-f8d835ad00f41535c82822bb7ba2742edda7393a9bd526d071b4d464e7338a583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2265/4/042047/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Cardaun, Martin</creatorcontrib><creatorcontrib>Mülder, Christoph</creatorcontrib><creatorcontrib>Decker, Thomas</creatorcontrib><creatorcontrib>Dilba, Boris</creatorcontrib><creatorcontrib>Duda, Tobias</creatorcontrib><creatorcontrib>Schelenz, Ralf</creatorcontrib><creatorcontrib>Jacobs, Georg</creatorcontrib><creatorcontrib>Hameyer, Kay</creatorcontrib><creatorcontrib>Keuchel, Sören</creatorcontrib><title>Multi-Physical Simulation Toolchain for the Prediction of Acoustic Emissions of Direct Drive Wind Turbines</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>To address the acoustic behaviour of wind turbines, particularly tonalities, in an early design stage, accurate simulation toolchains have to be developed. In this work a novel simulation approach for the prediction of tonalities of direct drive wind turbines is presented. Comprehensive work is carried out in the fields of electromagnetic force excitation, structural sound transfer and radiation as well as airborne sound propagation. The developed methods are combined to a simulation toolchain to formulate a multi-physical system model of a direct drive wind turbine in order to predict tonal sound behaviour. These methods will be presented and discussed in detail in the course of this work. First, the approach, integrating the electromagnetic airgap forces of the large generator into a multi body simulation model of the mechanical turbine, is explained and validated with test bench measurements. Following, the modeling of the respective mbs is presented which calculates the resulting surface velocities. This model is solved in the time domain to account for the interaction between the external loads that are highly nonlinear and low-frequency and the high-frequency excitation forces of the generator. Subsequently, the methods for calculating the airborne sound emission in the vincinity of the turbine resulting from the surface velocities are discussed.</description><subject>Acoustic emission</subject><subject>Electromagnetic forces</subject><subject>Excitation</subject><subject>Multibody systems</subject><subject>Physical simulation</subject><subject>Physics</subject><subject>Simulation</subject><subject>Sound propagation</subject><subject>Wind turbines</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm2apE12OTY_mTjYxMuQJinL6JqatML-va2ViSCYm4RznvMe8gBwmaCbBHEeJ4ziKEsnWYxxlsY0RhQjyo7A6NA5Prw5PwVnIWwRIt1hI7B9bsvGRsvNPlglS7iyu7aUjXUVXDtXqo20FSych83GwKU32qqvpivgVLk2NFbB250NoSuGvjq33qgGzr39MPDNVhquW5_byoRzcFLIMpiL73sMXu9u17OHaPFy_zibLiJFE9JEBdecpFIjVNAkJanimGOc5yyXuPuE0VoyMiFykusUZxqxJKeaZtQwQrhMORmDqyG39u69NaERW9f6qlspcMa6DE5YT7GBUt6F4E0ham930u9FgkQvVvTKRK9P9GIFFYPYbvJ6mLSu_ol-Ws5Wv0FR66KDyR_wfys-AZE6iFo</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Cardaun, Martin</creator><creator>Mülder, Christoph</creator><creator>Decker, Thomas</creator><creator>Dilba, Boris</creator><creator>Duda, Tobias</creator><creator>Schelenz, Ralf</creator><creator>Jacobs, Georg</creator><creator>Hameyer, Kay</creator><creator>Keuchel, Sören</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220501</creationdate><title>Multi-Physical Simulation Toolchain for the Prediction of Acoustic Emissions of Direct Drive Wind Turbines</title><author>Cardaun, Martin ; Mülder, Christoph ; Decker, Thomas ; Dilba, Boris ; Duda, Tobias ; Schelenz, Ralf ; Jacobs, Georg ; Hameyer, Kay ; Keuchel, Sören</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-f8d835ad00f41535c82822bb7ba2742edda7393a9bd526d071b4d464e7338a583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic emission</topic><topic>Electromagnetic forces</topic><topic>Excitation</topic><topic>Multibody systems</topic><topic>Physical simulation</topic><topic>Physics</topic><topic>Simulation</topic><topic>Sound propagation</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardaun, Martin</creatorcontrib><creatorcontrib>Mülder, Christoph</creatorcontrib><creatorcontrib>Decker, Thomas</creatorcontrib><creatorcontrib>Dilba, Boris</creatorcontrib><creatorcontrib>Duda, Tobias</creatorcontrib><creatorcontrib>Schelenz, Ralf</creatorcontrib><creatorcontrib>Jacobs, Georg</creatorcontrib><creatorcontrib>Hameyer, Kay</creatorcontrib><creatorcontrib>Keuchel, Sören</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardaun, Martin</au><au>Mülder, Christoph</au><au>Decker, Thomas</au><au>Dilba, Boris</au><au>Duda, Tobias</au><au>Schelenz, Ralf</au><au>Jacobs, Georg</au><au>Hameyer, Kay</au><au>Keuchel, Sören</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Physical Simulation Toolchain for the Prediction of Acoustic Emissions of Direct Drive Wind Turbines</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>2265</volume><issue>4</issue><spage>42047</spage><pages>42047-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>To address the acoustic behaviour of wind turbines, particularly tonalities, in an early design stage, accurate simulation toolchains have to be developed. In this work a novel simulation approach for the prediction of tonalities of direct drive wind turbines is presented. Comprehensive work is carried out in the fields of electromagnetic force excitation, structural sound transfer and radiation as well as airborne sound propagation. The developed methods are combined to a simulation toolchain to formulate a multi-physical system model of a direct drive wind turbine in order to predict tonal sound behaviour. These methods will be presented and discussed in detail in the course of this work. First, the approach, integrating the electromagnetic airgap forces of the large generator into a multi body simulation model of the mechanical turbine, is explained and validated with test bench measurements. Following, the modeling of the respective mbs is presented which calculates the resulting surface velocities. This model is solved in the time domain to account for the interaction between the external loads that are highly nonlinear and low-frequency and the high-frequency excitation forces of the generator. Subsequently, the methods for calculating the airborne sound emission in the vincinity of the turbine resulting from the surface velocities are discussed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2265/4/042047</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2022-05, Vol.2265 (4), p.42047 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2672748378 |
source | IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acoustic emission Electromagnetic forces Excitation Multibody systems Physical simulation Physics Simulation Sound propagation Wind turbines |
title | Multi-Physical Simulation Toolchain for the Prediction of Acoustic Emissions of Direct Drive Wind Turbines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Physical%20Simulation%20Toolchain%20for%20the%20Prediction%20of%20Acoustic%20Emissions%20of%20Direct%20Drive%20Wind%20Turbines&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Cardaun,%20Martin&rft.date=2022-05-01&rft.volume=2265&rft.issue=4&rft.spage=42047&rft.pages=42047-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2265/4/042047&rft_dat=%3Cproquest_cross%3E2672748378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672748378&rft_id=info:pmid/&rfr_iscdi=true |