Multi-Physical Simulation Toolchain for the Prediction of Acoustic Emissions of Direct Drive Wind Turbines

To address the acoustic behaviour of wind turbines, particularly tonalities, in an early design stage, accurate simulation toolchains have to be developed. In this work a novel simulation approach for the prediction of tonalities of direct drive wind turbines is presented. Comprehensive work is carr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2022-05, Vol.2265 (4), p.42047
Hauptverfasser: Cardaun, Martin, Mülder, Christoph, Decker, Thomas, Dilba, Boris, Duda, Tobias, Schelenz, Ralf, Jacobs, Georg, Hameyer, Kay, Keuchel, Sören
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 42047
container_title Journal of physics. Conference series
container_volume 2265
creator Cardaun, Martin
Mülder, Christoph
Decker, Thomas
Dilba, Boris
Duda, Tobias
Schelenz, Ralf
Jacobs, Georg
Hameyer, Kay
Keuchel, Sören
description To address the acoustic behaviour of wind turbines, particularly tonalities, in an early design stage, accurate simulation toolchains have to be developed. In this work a novel simulation approach for the prediction of tonalities of direct drive wind turbines is presented. Comprehensive work is carried out in the fields of electromagnetic force excitation, structural sound transfer and radiation as well as airborne sound propagation. The developed methods are combined to a simulation toolchain to formulate a multi-physical system model of a direct drive wind turbine in order to predict tonal sound behaviour. These methods will be presented and discussed in detail in the course of this work. First, the approach, integrating the electromagnetic airgap forces of the large generator into a multi body simulation model of the mechanical turbine, is explained and validated with test bench measurements. Following, the modeling of the respective mbs is presented which calculates the resulting surface velocities. This model is solved in the time domain to account for the interaction between the external loads that are highly nonlinear and low-frequency and the high-frequency excitation forces of the generator. Subsequently, the methods for calculating the airborne sound emission in the vincinity of the turbine resulting from the surface velocities are discussed.
doi_str_mv 10.1088/1742-6596/2265/4/042047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672748378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672748378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-f8d835ad00f41535c82822bb7ba2742edda7393a9bd526d071b4d464e7338a583</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm2apE12OTY_mTjYxMuQJinL6JqatML-va2ViSCYm4RznvMe8gBwmaCbBHEeJ4ziKEsnWYxxlsY0RhQjyo7A6NA5Prw5PwVnIWwRIt1hI7B9bsvGRsvNPlglS7iyu7aUjXUVXDtXqo20FSych83GwKU32qqvpivgVLk2NFbB250NoSuGvjq33qgGzr39MPDNVhquW5_byoRzcFLIMpiL73sMXu9u17OHaPFy_zibLiJFE9JEBdecpFIjVNAkJanimGOc5yyXuPuE0VoyMiFykusUZxqxJKeaZtQwQrhMORmDqyG39u69NaERW9f6qlspcMa6DE5YT7GBUt6F4E0ham930u9FgkQvVvTKRK9P9GIFFYPYbvJ6mLSu_ol-Ws5Wv0FR66KDyR_wfys-AZE6iFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672748378</pqid></control><display><type>article</type><title>Multi-Physical Simulation Toolchain for the Prediction of Acoustic Emissions of Direct Drive Wind Turbines</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cardaun, Martin ; Mülder, Christoph ; Decker, Thomas ; Dilba, Boris ; Duda, Tobias ; Schelenz, Ralf ; Jacobs, Georg ; Hameyer, Kay ; Keuchel, Sören</creator><creatorcontrib>Cardaun, Martin ; Mülder, Christoph ; Decker, Thomas ; Dilba, Boris ; Duda, Tobias ; Schelenz, Ralf ; Jacobs, Georg ; Hameyer, Kay ; Keuchel, Sören</creatorcontrib><description>To address the acoustic behaviour of wind turbines, particularly tonalities, in an early design stage, accurate simulation toolchains have to be developed. In this work a novel simulation approach for the prediction of tonalities of direct drive wind turbines is presented. Comprehensive work is carried out in the fields of electromagnetic force excitation, structural sound transfer and radiation as well as airborne sound propagation. The developed methods are combined to a simulation toolchain to formulate a multi-physical system model of a direct drive wind turbine in order to predict tonal sound behaviour. These methods will be presented and discussed in detail in the course of this work. First, the approach, integrating the electromagnetic airgap forces of the large generator into a multi body simulation model of the mechanical turbine, is explained and validated with test bench measurements. Following, the modeling of the respective mbs is presented which calculates the resulting surface velocities. This model is solved in the time domain to account for the interaction between the external loads that are highly nonlinear and low-frequency and the high-frequency excitation forces of the generator. Subsequently, the methods for calculating the airborne sound emission in the vincinity of the turbine resulting from the surface velocities are discussed.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2265/4/042047</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Acoustic emission ; Electromagnetic forces ; Excitation ; Multibody systems ; Physical simulation ; Physics ; Simulation ; Sound propagation ; Wind turbines</subject><ispartof>Journal of physics. Conference series, 2022-05, Vol.2265 (4), p.42047</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-f8d835ad00f41535c82822bb7ba2742edda7393a9bd526d071b4d464e7338a583</citedby><cites>FETCH-LOGICAL-c413t-f8d835ad00f41535c82822bb7ba2742edda7393a9bd526d071b4d464e7338a583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2265/4/042047/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Cardaun, Martin</creatorcontrib><creatorcontrib>Mülder, Christoph</creatorcontrib><creatorcontrib>Decker, Thomas</creatorcontrib><creatorcontrib>Dilba, Boris</creatorcontrib><creatorcontrib>Duda, Tobias</creatorcontrib><creatorcontrib>Schelenz, Ralf</creatorcontrib><creatorcontrib>Jacobs, Georg</creatorcontrib><creatorcontrib>Hameyer, Kay</creatorcontrib><creatorcontrib>Keuchel, Sören</creatorcontrib><title>Multi-Physical Simulation Toolchain for the Prediction of Acoustic Emissions of Direct Drive Wind Turbines</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>To address the acoustic behaviour of wind turbines, particularly tonalities, in an early design stage, accurate simulation toolchains have to be developed. In this work a novel simulation approach for the prediction of tonalities of direct drive wind turbines is presented. Comprehensive work is carried out in the fields of electromagnetic force excitation, structural sound transfer and radiation as well as airborne sound propagation. The developed methods are combined to a simulation toolchain to formulate a multi-physical system model of a direct drive wind turbine in order to predict tonal sound behaviour. These methods will be presented and discussed in detail in the course of this work. First, the approach, integrating the electromagnetic airgap forces of the large generator into a multi body simulation model of the mechanical turbine, is explained and validated with test bench measurements. Following, the modeling of the respective mbs is presented which calculates the resulting surface velocities. This model is solved in the time domain to account for the interaction between the external loads that are highly nonlinear and low-frequency and the high-frequency excitation forces of the generator. Subsequently, the methods for calculating the airborne sound emission in the vincinity of the turbine resulting from the surface velocities are discussed.</description><subject>Acoustic emission</subject><subject>Electromagnetic forces</subject><subject>Excitation</subject><subject>Multibody systems</subject><subject>Physical simulation</subject><subject>Physics</subject><subject>Simulation</subject><subject>Sound propagation</subject><subject>Wind turbines</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm2apE12OTY_mTjYxMuQJinL6JqatML-va2ViSCYm4RznvMe8gBwmaCbBHEeJ4ziKEsnWYxxlsY0RhQjyo7A6NA5Prw5PwVnIWwRIt1hI7B9bsvGRsvNPlglS7iyu7aUjXUVXDtXqo20FSych83GwKU32qqvpivgVLk2NFbB250NoSuGvjq33qgGzr39MPDNVhquW5_byoRzcFLIMpiL73sMXu9u17OHaPFy_zibLiJFE9JEBdecpFIjVNAkJanimGOc5yyXuPuE0VoyMiFykusUZxqxJKeaZtQwQrhMORmDqyG39u69NaERW9f6qlspcMa6DE5YT7GBUt6F4E0ham930u9FgkQvVvTKRK9P9GIFFYPYbvJ6mLSu_ol-Ws5Wv0FR66KDyR_wfys-AZE6iFo</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Cardaun, Martin</creator><creator>Mülder, Christoph</creator><creator>Decker, Thomas</creator><creator>Dilba, Boris</creator><creator>Duda, Tobias</creator><creator>Schelenz, Ralf</creator><creator>Jacobs, Georg</creator><creator>Hameyer, Kay</creator><creator>Keuchel, Sören</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220501</creationdate><title>Multi-Physical Simulation Toolchain for the Prediction of Acoustic Emissions of Direct Drive Wind Turbines</title><author>Cardaun, Martin ; Mülder, Christoph ; Decker, Thomas ; Dilba, Boris ; Duda, Tobias ; Schelenz, Ralf ; Jacobs, Georg ; Hameyer, Kay ; Keuchel, Sören</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-f8d835ad00f41535c82822bb7ba2742edda7393a9bd526d071b4d464e7338a583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic emission</topic><topic>Electromagnetic forces</topic><topic>Excitation</topic><topic>Multibody systems</topic><topic>Physical simulation</topic><topic>Physics</topic><topic>Simulation</topic><topic>Sound propagation</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardaun, Martin</creatorcontrib><creatorcontrib>Mülder, Christoph</creatorcontrib><creatorcontrib>Decker, Thomas</creatorcontrib><creatorcontrib>Dilba, Boris</creatorcontrib><creatorcontrib>Duda, Tobias</creatorcontrib><creatorcontrib>Schelenz, Ralf</creatorcontrib><creatorcontrib>Jacobs, Georg</creatorcontrib><creatorcontrib>Hameyer, Kay</creatorcontrib><creatorcontrib>Keuchel, Sören</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardaun, Martin</au><au>Mülder, Christoph</au><au>Decker, Thomas</au><au>Dilba, Boris</au><au>Duda, Tobias</au><au>Schelenz, Ralf</au><au>Jacobs, Georg</au><au>Hameyer, Kay</au><au>Keuchel, Sören</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Physical Simulation Toolchain for the Prediction of Acoustic Emissions of Direct Drive Wind Turbines</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>2265</volume><issue>4</issue><spage>42047</spage><pages>42047-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>To address the acoustic behaviour of wind turbines, particularly tonalities, in an early design stage, accurate simulation toolchains have to be developed. In this work a novel simulation approach for the prediction of tonalities of direct drive wind turbines is presented. Comprehensive work is carried out in the fields of electromagnetic force excitation, structural sound transfer and radiation as well as airborne sound propagation. The developed methods are combined to a simulation toolchain to formulate a multi-physical system model of a direct drive wind turbine in order to predict tonal sound behaviour. These methods will be presented and discussed in detail in the course of this work. First, the approach, integrating the electromagnetic airgap forces of the large generator into a multi body simulation model of the mechanical turbine, is explained and validated with test bench measurements. Following, the modeling of the respective mbs is presented which calculates the resulting surface velocities. This model is solved in the time domain to account for the interaction between the external loads that are highly nonlinear and low-frequency and the high-frequency excitation forces of the generator. Subsequently, the methods for calculating the airborne sound emission in the vincinity of the turbine resulting from the surface velocities are discussed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2265/4/042047</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2022-05, Vol.2265 (4), p.42047
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2672748378
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acoustic emission
Electromagnetic forces
Excitation
Multibody systems
Physical simulation
Physics
Simulation
Sound propagation
Wind turbines
title Multi-Physical Simulation Toolchain for the Prediction of Acoustic Emissions of Direct Drive Wind Turbines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Physical%20Simulation%20Toolchain%20for%20the%20Prediction%20of%20Acoustic%20Emissions%20of%20Direct%20Drive%20Wind%20Turbines&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Cardaun,%20Martin&rft.date=2022-05-01&rft.volume=2265&rft.issue=4&rft.spage=42047&rft.pages=42047-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2265/4/042047&rft_dat=%3Cproquest_cross%3E2672748378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672748378&rft_id=info:pmid/&rfr_iscdi=true