Nanosecond‐pulsed microbubble plasma reactor for plasma‐activated water generation and bacterial inactivation

In this study, a microbubble‐enabled plasma reactor driven by a nanosecond‐pulsed generator was developed to provide an effective means for transferring highly reactive plasma species into liquids for plasma‐activated water (PAW) production. The physicochemical characteristics of PAW at different te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma processes and polymers 2022-06, Vol.19 (6), p.n/a
Hauptverfasser: Man, Chenxi, Zhang, Cheng, Fang, Haiqin, Zhou, Renwu, Huang, Bangdou, Xu, Yuanzhong, Zhang, Xiaoxing, Shao, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Plasma processes and polymers
container_volume 19
creator Man, Chenxi
Zhang, Cheng
Fang, Haiqin
Zhou, Renwu
Huang, Bangdou
Xu, Yuanzhong
Zhang, Xiaoxing
Shao, Tao
description In this study, a microbubble‐enabled plasma reactor driven by a nanosecond‐pulsed generator was developed to provide an effective means for transferring highly reactive plasma species into liquids for plasma‐activated water (PAW) production. The physicochemical characteristics of PAW at different temperatures were evaluated, and the corresponding antimicrobial effects of PAW against Escherichia coli cells were investigated. Results show that the microbubble‐enabled PAW at a lower temperature (10°C) had the highest antimicrobial activity, resulting in a 2.43 ± 1.02‐log10 reduction of E. coli in PAW. The excellent energy efficiency of the total reactive oxygen and nitrogen species production in PAW is 10.37 g kW−1 h−1. Overall, this study provides much‐needed insights into the microbubble‐enabled plasma chemistries for optimizing the biochemical activity of PAW. Microbubble‐enabled plasma‐activated water driven by nanosecond pulses is used against Escherichia coli cells. A 2.43 ± 1.02‐log10 reduction of E. coli cells in 30 min is achieved with optimized a NO3− concentration of 4.05 mM and a total reactive oxygen and nitrogen species production of 10.37 g kW−1 h−1
doi_str_mv 10.1002/ppap.202200004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672639404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672639404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-3bd0155009585fd8fcdabddefe472d0ab104ed90d80d6d16c9d7387bae7e5b213</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXzwHPWyfZ72MpfkHRHvQcks2sbNlu0mTX4s2f4G_0l5iypR4NTCbMPG-GeQm5ZjBjAPzWWmlnHDiHcJITMmEZ41FRZOXp8Z3CObnwfg0QQ1rAhGyfZWc8VqbTP1_fdmg9arppKmfUoFSL1LbSbyR1KKveOFqHGEsBD6XmQ_ZBsQu3o-_YoZN9YzoqO01V6KNrZEub7oCG1iU5q2UYc3XIU_J2f_e6eIyWLw9Pi_kyqmKWJ1GsNLA0BSjTIq11UVdaKq2xxiTnGqRikKAuQRegM82yqtR5XORKYo6p4iyekpvxX-vMdkDfi7UZXBdGCp7lPIvLBJJAzUYqbOy9w1pY12yk-xQMxN5WsbdVHG0NgnIU7JoWP_-hxWo1X_1pfwF3XoFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672639404</pqid></control><display><type>article</type><title>Nanosecond‐pulsed microbubble plasma reactor for plasma‐activated water generation and bacterial inactivation</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Man, Chenxi ; Zhang, Cheng ; Fang, Haiqin ; Zhou, Renwu ; Huang, Bangdou ; Xu, Yuanzhong ; Zhang, Xiaoxing ; Shao, Tao</creator><creatorcontrib>Man, Chenxi ; Zhang, Cheng ; Fang, Haiqin ; Zhou, Renwu ; Huang, Bangdou ; Xu, Yuanzhong ; Zhang, Xiaoxing ; Shao, Tao</creatorcontrib><description>In this study, a microbubble‐enabled plasma reactor driven by a nanosecond‐pulsed generator was developed to provide an effective means for transferring highly reactive plasma species into liquids for plasma‐activated water (PAW) production. The physicochemical characteristics of PAW at different temperatures were evaluated, and the corresponding antimicrobial effects of PAW against Escherichia coli cells were investigated. Results show that the microbubble‐enabled PAW at a lower temperature (10°C) had the highest antimicrobial activity, resulting in a 2.43 ± 1.02‐log10 reduction of E. coli in PAW. The excellent energy efficiency of the total reactive oxygen and nitrogen species production in PAW is 10.37 g kW−1 h−1. Overall, this study provides much‐needed insights into the microbubble‐enabled plasma chemistries for optimizing the biochemical activity of PAW. Microbubble‐enabled plasma‐activated water driven by nanosecond pulses is used against Escherichia coli cells. A 2.43 ± 1.02‐log10 reduction of E. coli cells in 30 min is achieved with optimized a NO3− concentration of 4.05 mM and a total reactive oxygen and nitrogen species production of 10.37 g kW−1 h−1</description><identifier>ISSN: 1612-8850</identifier><identifier>EISSN: 1612-8869</identifier><identifier>DOI: 10.1002/ppap.202200004</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Antiinfectives and antibacterials ; biochemical activity ; E coli ; microbubble‐enabled plasma ; nanosecond pulse ; plasma activated water ; temperature‐dependent</subject><ispartof>Plasma processes and polymers, 2022-06, Vol.19 (6), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-3bd0155009585fd8fcdabddefe472d0ab104ed90d80d6d16c9d7387bae7e5b213</citedby><cites>FETCH-LOGICAL-c3174-3bd0155009585fd8fcdabddefe472d0ab104ed90d80d6d16c9d7387bae7e5b213</cites><orcidid>0000-0003-1773-7095 ; 0000-0002-1523-7380 ; 0000-0003-1512-2820 ; 0000-0002-5738-1241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppap.202200004$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppap.202200004$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Man, Chenxi</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Fang, Haiqin</creatorcontrib><creatorcontrib>Zhou, Renwu</creatorcontrib><creatorcontrib>Huang, Bangdou</creatorcontrib><creatorcontrib>Xu, Yuanzhong</creatorcontrib><creatorcontrib>Zhang, Xiaoxing</creatorcontrib><creatorcontrib>Shao, Tao</creatorcontrib><title>Nanosecond‐pulsed microbubble plasma reactor for plasma‐activated water generation and bacterial inactivation</title><title>Plasma processes and polymers</title><description>In this study, a microbubble‐enabled plasma reactor driven by a nanosecond‐pulsed generator was developed to provide an effective means for transferring highly reactive plasma species into liquids for plasma‐activated water (PAW) production. The physicochemical characteristics of PAW at different temperatures were evaluated, and the corresponding antimicrobial effects of PAW against Escherichia coli cells were investigated. Results show that the microbubble‐enabled PAW at a lower temperature (10°C) had the highest antimicrobial activity, resulting in a 2.43 ± 1.02‐log10 reduction of E. coli in PAW. The excellent energy efficiency of the total reactive oxygen and nitrogen species production in PAW is 10.37 g kW−1 h−1. Overall, this study provides much‐needed insights into the microbubble‐enabled plasma chemistries for optimizing the biochemical activity of PAW. Microbubble‐enabled plasma‐activated water driven by nanosecond pulses is used against Escherichia coli cells. A 2.43 ± 1.02‐log10 reduction of E. coli cells in 30 min is achieved with optimized a NO3− concentration of 4.05 mM and a total reactive oxygen and nitrogen species production of 10.37 g kW−1 h−1</description><subject>Antiinfectives and antibacterials</subject><subject>biochemical activity</subject><subject>E coli</subject><subject>microbubble‐enabled plasma</subject><subject>nanosecond pulse</subject><subject>plasma activated water</subject><subject>temperature‐dependent</subject><issn>1612-8850</issn><issn>1612-8869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtXzwHPWyfZ72MpfkHRHvQcks2sbNlu0mTX4s2f4G_0l5iypR4NTCbMPG-GeQm5ZjBjAPzWWmlnHDiHcJITMmEZ41FRZOXp8Z3CObnwfg0QQ1rAhGyfZWc8VqbTP1_fdmg9arppKmfUoFSL1LbSbyR1KKveOFqHGEsBD6XmQ_ZBsQu3o-_YoZN9YzoqO01V6KNrZEub7oCG1iU5q2UYc3XIU_J2f_e6eIyWLw9Pi_kyqmKWJ1GsNLA0BSjTIq11UVdaKq2xxiTnGqRikKAuQRegM82yqtR5XORKYo6p4iyekpvxX-vMdkDfi7UZXBdGCp7lPIvLBJJAzUYqbOy9w1pY12yk-xQMxN5WsbdVHG0NgnIU7JoWP_-hxWo1X_1pfwF3XoFQ</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Man, Chenxi</creator><creator>Zhang, Cheng</creator><creator>Fang, Haiqin</creator><creator>Zhou, Renwu</creator><creator>Huang, Bangdou</creator><creator>Xu, Yuanzhong</creator><creator>Zhang, Xiaoxing</creator><creator>Shao, Tao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1773-7095</orcidid><orcidid>https://orcid.org/0000-0002-1523-7380</orcidid><orcidid>https://orcid.org/0000-0003-1512-2820</orcidid><orcidid>https://orcid.org/0000-0002-5738-1241</orcidid></search><sort><creationdate>202206</creationdate><title>Nanosecond‐pulsed microbubble plasma reactor for plasma‐activated water generation and bacterial inactivation</title><author>Man, Chenxi ; Zhang, Cheng ; Fang, Haiqin ; Zhou, Renwu ; Huang, Bangdou ; Xu, Yuanzhong ; Zhang, Xiaoxing ; Shao, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-3bd0155009585fd8fcdabddefe472d0ab104ed90d80d6d16c9d7387bae7e5b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiinfectives and antibacterials</topic><topic>biochemical activity</topic><topic>E coli</topic><topic>microbubble‐enabled plasma</topic><topic>nanosecond pulse</topic><topic>plasma activated water</topic><topic>temperature‐dependent</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Man, Chenxi</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Fang, Haiqin</creatorcontrib><creatorcontrib>Zhou, Renwu</creatorcontrib><creatorcontrib>Huang, Bangdou</creatorcontrib><creatorcontrib>Xu, Yuanzhong</creatorcontrib><creatorcontrib>Zhang, Xiaoxing</creatorcontrib><creatorcontrib>Shao, Tao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Plasma processes and polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Man, Chenxi</au><au>Zhang, Cheng</au><au>Fang, Haiqin</au><au>Zhou, Renwu</au><au>Huang, Bangdou</au><au>Xu, Yuanzhong</au><au>Zhang, Xiaoxing</au><au>Shao, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanosecond‐pulsed microbubble plasma reactor for plasma‐activated water generation and bacterial inactivation</atitle><jtitle>Plasma processes and polymers</jtitle><date>2022-06</date><risdate>2022</risdate><volume>19</volume><issue>6</issue><epage>n/a</epage><issn>1612-8850</issn><eissn>1612-8869</eissn><abstract>In this study, a microbubble‐enabled plasma reactor driven by a nanosecond‐pulsed generator was developed to provide an effective means for transferring highly reactive plasma species into liquids for plasma‐activated water (PAW) production. The physicochemical characteristics of PAW at different temperatures were evaluated, and the corresponding antimicrobial effects of PAW against Escherichia coli cells were investigated. Results show that the microbubble‐enabled PAW at a lower temperature (10°C) had the highest antimicrobial activity, resulting in a 2.43 ± 1.02‐log10 reduction of E. coli in PAW. The excellent energy efficiency of the total reactive oxygen and nitrogen species production in PAW is 10.37 g kW−1 h−1. Overall, this study provides much‐needed insights into the microbubble‐enabled plasma chemistries for optimizing the biochemical activity of PAW. Microbubble‐enabled plasma‐activated water driven by nanosecond pulses is used against Escherichia coli cells. A 2.43 ± 1.02‐log10 reduction of E. coli cells in 30 min is achieved with optimized a NO3− concentration of 4.05 mM and a total reactive oxygen and nitrogen species production of 10.37 g kW−1 h−1</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppap.202200004</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1773-7095</orcidid><orcidid>https://orcid.org/0000-0002-1523-7380</orcidid><orcidid>https://orcid.org/0000-0003-1512-2820</orcidid><orcidid>https://orcid.org/0000-0002-5738-1241</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1612-8850
ispartof Plasma processes and polymers, 2022-06, Vol.19 (6), p.n/a
issn 1612-8850
1612-8869
language eng
recordid cdi_proquest_journals_2672639404
source Wiley Online Library - AutoHoldings Journals
subjects Antiinfectives and antibacterials
biochemical activity
E coli
microbubble‐enabled plasma
nanosecond pulse
plasma activated water
temperature‐dependent
title Nanosecond‐pulsed microbubble plasma reactor for plasma‐activated water generation and bacterial inactivation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanosecond%E2%80%90pulsed%20microbubble%20plasma%20reactor%20for%20plasma%E2%80%90activated%20water%20generation%20and%20bacterial%20inactivation&rft.jtitle=Plasma%20processes%20and%20polymers&rft.au=Man,%20Chenxi&rft.date=2022-06&rft.volume=19&rft.issue=6&rft.epage=n/a&rft.issn=1612-8850&rft.eissn=1612-8869&rft_id=info:doi/10.1002/ppap.202200004&rft_dat=%3Cproquest_cross%3E2672639404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672639404&rft_id=info:pmid/&rfr_iscdi=true