Electrochemical discharge machining of microchannels in glass using a non-Newtonian fluid electrolyte

The gas film plays a key role in electrochemical discharge machining (ECDM). However, the impact force of the electrochemical discharge affects the gas film and hence can lower the machining performance. To improve the stability of the gas film, a novel ECDM approach based on a non-Newtonian fluid e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2022-07, Vol.305, p.117594, Article 117594
Hauptverfasser: Zou, Zhixiang, Guo, Zhongning, Zhang, Kai, Xiao, Yingjie, Yue, Taiman, Liu, Jiangwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117594
container_title Journal of materials processing technology
container_volume 305
creator Zou, Zhixiang
Guo, Zhongning
Zhang, Kai
Xiao, Yingjie
Yue, Taiman
Liu, Jiangwen
description The gas film plays a key role in electrochemical discharge machining (ECDM). However, the impact force of the electrochemical discharge affects the gas film and hence can lower the machining performance. To improve the stability of the gas film, a novel ECDM approach based on a non-Newtonian fluid electrolyte, i.e. the mixture of Polyacrylamide and KOH is proposed in this study. The experimental results show that, compared to the traditional Newtonian fluid KOH electrolyte, the non-Newtonian fluid electrolyte can significantly weaken the effect of the impact force on the gas film, and thus the gas film was more stable. The theoretical model and experimental results both show that stable electrochemical discharge and a lower critical voltage can be achieved with a non-Newtonian fluid electrolyte condition for its’ gas film is thinner and more stable than with the KOH electrolyte. With the non-Newtonian fluid electrolyte, the heat-affected zone and entrance overcut of the microchannels were both smaller than with the KOH electrolyte. In this study, a complex microchannel with a depth of 100 µm and a spacing of 30 µm was successfully fabricated. This is the smallest spacing reported so far in the literature for a microchannel fabricated in glass using ECDM. Moreover, a smoother machining surface with Ra 0.45 µm was obtained with the non-Newtonian fluid electrolyte. It can be concluded that using the non-Newtonian fluid electrolyte is a simple and effective way to enhance the stability of gas film and thus, improve the micromachining performance of ECDM.
doi_str_mv 10.1016/j.jmatprotec.2022.117594
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672382090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013622001066</els_id><sourcerecordid>2672382090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-31f548b60c4b199ed7c22964baeba650faa63f19f266e58e6a3ad7dca97fb7353</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwD5ZYp_iR2MkSqvKQKtjA2po449ZR6hQ7BfXvSRUklqxmcR-jewihnC044-quXbQ7GPaxH9AuBBNiwbkuqvyMzHipZZZrnZ-TGatEnjEu1SW5SqlljGtWljOCqw7tEHu7xZ230NHGJ7uFuEG6A7v1wYcN7R0dxZMJQsAuUR_opoOU6CGddKChD9krfg998BCo6w6-oTg1d8cBr8mFgy7hze-dk4_H1fvyOVu_Pb0s79eZlbkaMsldkZe1YjaveVVho60QlcprwBpUwRyAko5XTiiFRYkKJDS6sVBpV2tZyDm5nXpHHp8HTINp-0MM40sjlBayFKxio6ucXOOklCI6s49-B_FoODMnqKY1f1DNCaqZoI7Rhyk6UsAvj9Ek6zFYbHwc15qm9_-X_ACgW4e_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672382090</pqid></control><display><type>article</type><title>Electrochemical discharge machining of microchannels in glass using a non-Newtonian fluid electrolyte</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zou, Zhixiang ; Guo, Zhongning ; Zhang, Kai ; Xiao, Yingjie ; Yue, Taiman ; Liu, Jiangwen</creator><creatorcontrib>Zou, Zhixiang ; Guo, Zhongning ; Zhang, Kai ; Xiao, Yingjie ; Yue, Taiman ; Liu, Jiangwen</creatorcontrib><description>The gas film plays a key role in electrochemical discharge machining (ECDM). However, the impact force of the electrochemical discharge affects the gas film and hence can lower the machining performance. To improve the stability of the gas film, a novel ECDM approach based on a non-Newtonian fluid electrolyte, i.e. the mixture of Polyacrylamide and KOH is proposed in this study. The experimental results show that, compared to the traditional Newtonian fluid KOH electrolyte, the non-Newtonian fluid electrolyte can significantly weaken the effect of the impact force on the gas film, and thus the gas film was more stable. The theoretical model and experimental results both show that stable electrochemical discharge and a lower critical voltage can be achieved with a non-Newtonian fluid electrolyte condition for its’ gas film is thinner and more stable than with the KOH electrolyte. With the non-Newtonian fluid electrolyte, the heat-affected zone and entrance overcut of the microchannels were both smaller than with the KOH electrolyte. In this study, a complex microchannel with a depth of 100 µm and a spacing of 30 µm was successfully fabricated. This is the smallest spacing reported so far in the literature for a microchannel fabricated in glass using ECDM. Moreover, a smoother machining surface with Ra 0.45 µm was obtained with the non-Newtonian fluid electrolyte. It can be concluded that using the non-Newtonian fluid electrolyte is a simple and effective way to enhance the stability of gas film and thus, improve the micromachining performance of ECDM.</description><identifier>ISSN: 0924-0136</identifier><identifier>EISSN: 1873-4774</identifier><identifier>DOI: 10.1016/j.jmatprotec.2022.117594</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Discharge ; ECDM ; Electrolytes ; Glass ; Heat affected zone ; Impact loads ; Machining ; Microchannel ; Microchannels ; Micromachining ; Newtonian fluids ; Non Newtonian fluids ; Non-Newtonian fluid electrolyte ; Polyacrylamide ; Stability ; Stable gas film</subject><ispartof>Journal of materials processing technology, 2022-07, Vol.305, p.117594, Article 117594</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-31f548b60c4b199ed7c22964baeba650faa63f19f266e58e6a3ad7dca97fb7353</citedby><cites>FETCH-LOGICAL-c346t-31f548b60c4b199ed7c22964baeba650faa63f19f266e58e6a3ad7dca97fb7353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmatprotec.2022.117594$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Zou, Zhixiang</creatorcontrib><creatorcontrib>Guo, Zhongning</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Xiao, Yingjie</creatorcontrib><creatorcontrib>Yue, Taiman</creatorcontrib><creatorcontrib>Liu, Jiangwen</creatorcontrib><title>Electrochemical discharge machining of microchannels in glass using a non-Newtonian fluid electrolyte</title><title>Journal of materials processing technology</title><description>The gas film plays a key role in electrochemical discharge machining (ECDM). However, the impact force of the electrochemical discharge affects the gas film and hence can lower the machining performance. To improve the stability of the gas film, a novel ECDM approach based on a non-Newtonian fluid electrolyte, i.e. the mixture of Polyacrylamide and KOH is proposed in this study. The experimental results show that, compared to the traditional Newtonian fluid KOH electrolyte, the non-Newtonian fluid electrolyte can significantly weaken the effect of the impact force on the gas film, and thus the gas film was more stable. The theoretical model and experimental results both show that stable electrochemical discharge and a lower critical voltage can be achieved with a non-Newtonian fluid electrolyte condition for its’ gas film is thinner and more stable than with the KOH electrolyte. With the non-Newtonian fluid electrolyte, the heat-affected zone and entrance overcut of the microchannels were both smaller than with the KOH electrolyte. In this study, a complex microchannel with a depth of 100 µm and a spacing of 30 µm was successfully fabricated. This is the smallest spacing reported so far in the literature for a microchannel fabricated in glass using ECDM. Moreover, a smoother machining surface with Ra 0.45 µm was obtained with the non-Newtonian fluid electrolyte. It can be concluded that using the non-Newtonian fluid electrolyte is a simple and effective way to enhance the stability of gas film and thus, improve the micromachining performance of ECDM.</description><subject>Discharge</subject><subject>ECDM</subject><subject>Electrolytes</subject><subject>Glass</subject><subject>Heat affected zone</subject><subject>Impact loads</subject><subject>Machining</subject><subject>Microchannel</subject><subject>Microchannels</subject><subject>Micromachining</subject><subject>Newtonian fluids</subject><subject>Non Newtonian fluids</subject><subject>Non-Newtonian fluid electrolyte</subject><subject>Polyacrylamide</subject><subject>Stability</subject><subject>Stable gas film</subject><issn>0924-0136</issn><issn>1873-4774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwD5ZYp_iR2MkSqvKQKtjA2po449ZR6hQ7BfXvSRUklqxmcR-jewihnC044-quXbQ7GPaxH9AuBBNiwbkuqvyMzHipZZZrnZ-TGatEnjEu1SW5SqlljGtWljOCqw7tEHu7xZ230NHGJ7uFuEG6A7v1wYcN7R0dxZMJQsAuUR_opoOU6CGddKChD9krfg998BCo6w6-oTg1d8cBr8mFgy7hze-dk4_H1fvyOVu_Pb0s79eZlbkaMsldkZe1YjaveVVho60QlcprwBpUwRyAko5XTiiFRYkKJDS6sVBpV2tZyDm5nXpHHp8HTINp-0MM40sjlBayFKxio6ucXOOklCI6s49-B_FoODMnqKY1f1DNCaqZoI7Rhyk6UsAvj9Ek6zFYbHwc15qm9_-X_ACgW4e_</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Zou, Zhixiang</creator><creator>Guo, Zhongning</creator><creator>Zhang, Kai</creator><creator>Xiao, Yingjie</creator><creator>Yue, Taiman</creator><creator>Liu, Jiangwen</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202207</creationdate><title>Electrochemical discharge machining of microchannels in glass using a non-Newtonian fluid electrolyte</title><author>Zou, Zhixiang ; Guo, Zhongning ; Zhang, Kai ; Xiao, Yingjie ; Yue, Taiman ; Liu, Jiangwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-31f548b60c4b199ed7c22964baeba650faa63f19f266e58e6a3ad7dca97fb7353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Discharge</topic><topic>ECDM</topic><topic>Electrolytes</topic><topic>Glass</topic><topic>Heat affected zone</topic><topic>Impact loads</topic><topic>Machining</topic><topic>Microchannel</topic><topic>Microchannels</topic><topic>Micromachining</topic><topic>Newtonian fluids</topic><topic>Non Newtonian fluids</topic><topic>Non-Newtonian fluid electrolyte</topic><topic>Polyacrylamide</topic><topic>Stability</topic><topic>Stable gas film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Zhixiang</creatorcontrib><creatorcontrib>Guo, Zhongning</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Xiao, Yingjie</creatorcontrib><creatorcontrib>Yue, Taiman</creatorcontrib><creatorcontrib>Liu, Jiangwen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Zhixiang</au><au>Guo, Zhongning</au><au>Zhang, Kai</au><au>Xiao, Yingjie</au><au>Yue, Taiman</au><au>Liu, Jiangwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical discharge machining of microchannels in glass using a non-Newtonian fluid electrolyte</atitle><jtitle>Journal of materials processing technology</jtitle><date>2022-07</date><risdate>2022</risdate><volume>305</volume><spage>117594</spage><pages>117594-</pages><artnum>117594</artnum><issn>0924-0136</issn><eissn>1873-4774</eissn><abstract>The gas film plays a key role in electrochemical discharge machining (ECDM). However, the impact force of the electrochemical discharge affects the gas film and hence can lower the machining performance. To improve the stability of the gas film, a novel ECDM approach based on a non-Newtonian fluid electrolyte, i.e. the mixture of Polyacrylamide and KOH is proposed in this study. The experimental results show that, compared to the traditional Newtonian fluid KOH electrolyte, the non-Newtonian fluid electrolyte can significantly weaken the effect of the impact force on the gas film, and thus the gas film was more stable. The theoretical model and experimental results both show that stable electrochemical discharge and a lower critical voltage can be achieved with a non-Newtonian fluid electrolyte condition for its’ gas film is thinner and more stable than with the KOH electrolyte. With the non-Newtonian fluid electrolyte, the heat-affected zone and entrance overcut of the microchannels were both smaller than with the KOH electrolyte. In this study, a complex microchannel with a depth of 100 µm and a spacing of 30 µm was successfully fabricated. This is the smallest spacing reported so far in the literature for a microchannel fabricated in glass using ECDM. Moreover, a smoother machining surface with Ra 0.45 µm was obtained with the non-Newtonian fluid electrolyte. It can be concluded that using the non-Newtonian fluid electrolyte is a simple and effective way to enhance the stability of gas film and thus, improve the micromachining performance of ECDM.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2022.117594</doi></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2022-07, Vol.305, p.117594, Article 117594
issn 0924-0136
1873-4774
language eng
recordid cdi_proquest_journals_2672382090
source Access via ScienceDirect (Elsevier)
subjects Discharge
ECDM
Electrolytes
Glass
Heat affected zone
Impact loads
Machining
Microchannel
Microchannels
Micromachining
Newtonian fluids
Non Newtonian fluids
Non-Newtonian fluid electrolyte
Polyacrylamide
Stability
Stable gas film
title Electrochemical discharge machining of microchannels in glass using a non-Newtonian fluid electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20discharge%20machining%20of%20microchannels%20in%20glass%20using%20a%20non-Newtonian%20fluid%20electrolyte&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Zou,%20Zhixiang&rft.date=2022-07&rft.volume=305&rft.spage=117594&rft.pages=117594-&rft.artnum=117594&rft.issn=0924-0136&rft.eissn=1873-4774&rft_id=info:doi/10.1016/j.jmatprotec.2022.117594&rft_dat=%3Cproquest_cross%3E2672382090%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672382090&rft_id=info:pmid/&rft_els_id=S0924013622001066&rfr_iscdi=true