Hybrid nanofluid spray cooling performance and its residue surface effects: Toward thermal management of high heat flux devices

•Hybrid nanofluid spray system.shows critical heat flux enhancement up to 126%.•Critical heat flux enhancement may be due to residue wetting and wicking effects.•Hybrid nanofluid sprays show higher heat transfer coefficient than existing fluids.•Existing fluid sprays fail to effectively cool electri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2022-07, Vol.211, p.118454, Article 118454
Hauptverfasser: Riaz Siddiqui, Farooq, Tso, Chi-Yan, Qiu, Huihe, Chao, Christopher Y.H., Chung Fu, Sau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118454
container_title Applied thermal engineering
container_volume 211
creator Riaz Siddiqui, Farooq
Tso, Chi-Yan
Qiu, Huihe
Chao, Christopher Y.H.
Chung Fu, Sau
description •Hybrid nanofluid spray system.shows critical heat flux enhancement up to 126%.•Critical heat flux enhancement may be due to residue wetting and wicking effects.•Hybrid nanofluid sprays show higher heat transfer coefficient than existing fluids.•Existing fluid sprays fail to effectively cool electric vehicle power electronics.•Hybrid nanofluid sprays can effectively cool electric vehicle power electronics. In recent years, heat dissipation in high heat flux devices remarkably increased and it is anticipated to reach unprecedented levels in future devices, mainly due to increased power density, compact packaging and high-performance requirements. To address this challenge, in current research, we initially investigate the spray cooling performance and spray residue surface effects of the next generation thermal fluid, called hybrid nanofluid. Subsequently, we investigate the hybrid nanofluid spray cooling potential to address heat dissipation issues in a high heat flux application, that is, the electric vehicle (EV) high power electronics. Our results demonstrate that the critical heat flux (CHF) enhancement up to 126% can be achieved using the hybrid nanofluid spray cooling compared to water spray cooling. The hybrid nanofluid and its spray residue characterization further suggest that high CHF in hybrid nanofluid spray cooling may be due to high latent heat of vaporization and residue wetting and wicking effects. Moreover, the spray cooling efficiency and Nusselt number obtained for hybrid nanofluid spray cooling is more than twice that of water spray cooling. Furthermore, our results indicate that the hybrid nanofluid spray cooling can keep high power electronics of current and future electric vehicles below their failure temperatures, while the same cannot be achieved using water and dielectric fluid spray cooling.
doi_str_mv 10.1016/j.applthermaleng.2022.118454
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672381881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431122004094</els_id><sourcerecordid>2672381881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-768cf20ddca4a47cc0550c1ae4675ee6ec8e25c64959673655226eceea0c2ad83</originalsourceid><addsrcrecordid>eNqNkE9PAyEQxTdGE-uf70Ci163AAkuNF9NYNWnipZ4JwtDSbJcVdqs9-dWlaS_ePM3LZN6bmV9R3BI8JpiIu_VYd13TryBudAPtckwxpWNCJOPspBgRWVclF1icZl3xSckqQs6Li5TWGBMqazYqfl52H9Fb1Oo2uGbIKnVR75AJofHtEnUQXcjxrQGkW4t8n1CE5O0AKA3R6dwH58D06R4twpeOFh0PQtmll7CBtkfBoZVfrtAKdI_ynm9kYesNpKvizOkmwfWxXhbvs6fF9KWcvz2_Th_npakY7ctaSOMottZoplltDOYcG6KBiZoDCDASKDeCTfhE1JXgnNLcBNDYUG1ldVncHHK7GD4HSL1ahyG2eaWioqaVJFKSPPVwmDIxpBTBqS76jY47RbDaI1dr9Re52iNXB-TZPjvYIX-y9RBVMh4yOutjJqRs8P8L-gUSWJWy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672381881</pqid></control><display><type>article</type><title>Hybrid nanofluid spray cooling performance and its residue surface effects: Toward thermal management of high heat flux devices</title><source>Elsevier ScienceDirect Journals</source><creator>Riaz Siddiqui, Farooq ; Tso, Chi-Yan ; Qiu, Huihe ; Chao, Christopher Y.H. ; Chung Fu, Sau</creator><creatorcontrib>Riaz Siddiqui, Farooq ; Tso, Chi-Yan ; Qiu, Huihe ; Chao, Christopher Y.H. ; Chung Fu, Sau</creatorcontrib><description>•Hybrid nanofluid spray system.shows critical heat flux enhancement up to 126%.•Critical heat flux enhancement may be due to residue wetting and wicking effects.•Hybrid nanofluid sprays show higher heat transfer coefficient than existing fluids.•Existing fluid sprays fail to effectively cool electric vehicle power electronics.•Hybrid nanofluid sprays can effectively cool electric vehicle power electronics. In recent years, heat dissipation in high heat flux devices remarkably increased and it is anticipated to reach unprecedented levels in future devices, mainly due to increased power density, compact packaging and high-performance requirements. To address this challenge, in current research, we initially investigate the spray cooling performance and spray residue surface effects of the next generation thermal fluid, called hybrid nanofluid. Subsequently, we investigate the hybrid nanofluid spray cooling potential to address heat dissipation issues in a high heat flux application, that is, the electric vehicle (EV) high power electronics. Our results demonstrate that the critical heat flux (CHF) enhancement up to 126% can be achieved using the hybrid nanofluid spray cooling compared to water spray cooling. The hybrid nanofluid and its spray residue characterization further suggest that high CHF in hybrid nanofluid spray cooling may be due to high latent heat of vaporization and residue wetting and wicking effects. Moreover, the spray cooling efficiency and Nusselt number obtained for hybrid nanofluid spray cooling is more than twice that of water spray cooling. Furthermore, our results indicate that the hybrid nanofluid spray cooling can keep high power electronics of current and future electric vehicles below their failure temperatures, while the same cannot be achieved using water and dielectric fluid spray cooling.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2022.118454</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cooling ; Critical heat flux ; Electric vehicles ; Electronics ; Energy dissipation ; EV high power electronics ; Fluid dynamics ; Fluid flow ; Heat flux ; Heat of vaporization ; Heat transfer ; High heat flux devices ; Hybrid nanofluid spray ; Latent heat ; Nanofluids ; Residues ; Spray cooling ; Spray residue ; Thermal management ; Water sprays ; Wetting</subject><ispartof>Applied thermal engineering, 2022-07, Vol.211, p.118454, Article 118454</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 5, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-768cf20ddca4a47cc0550c1ae4675ee6ec8e25c64959673655226eceea0c2ad83</citedby><cites>FETCH-LOGICAL-c342t-768cf20ddca4a47cc0550c1ae4675ee6ec8e25c64959673655226eceea0c2ad83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431122004094$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Riaz Siddiqui, Farooq</creatorcontrib><creatorcontrib>Tso, Chi-Yan</creatorcontrib><creatorcontrib>Qiu, Huihe</creatorcontrib><creatorcontrib>Chao, Christopher Y.H.</creatorcontrib><creatorcontrib>Chung Fu, Sau</creatorcontrib><title>Hybrid nanofluid spray cooling performance and its residue surface effects: Toward thermal management of high heat flux devices</title><title>Applied thermal engineering</title><description>•Hybrid nanofluid spray system.shows critical heat flux enhancement up to 126%.•Critical heat flux enhancement may be due to residue wetting and wicking effects.•Hybrid nanofluid sprays show higher heat transfer coefficient than existing fluids.•Existing fluid sprays fail to effectively cool electric vehicle power electronics.•Hybrid nanofluid sprays can effectively cool electric vehicle power electronics. In recent years, heat dissipation in high heat flux devices remarkably increased and it is anticipated to reach unprecedented levels in future devices, mainly due to increased power density, compact packaging and high-performance requirements. To address this challenge, in current research, we initially investigate the spray cooling performance and spray residue surface effects of the next generation thermal fluid, called hybrid nanofluid. Subsequently, we investigate the hybrid nanofluid spray cooling potential to address heat dissipation issues in a high heat flux application, that is, the electric vehicle (EV) high power electronics. Our results demonstrate that the critical heat flux (CHF) enhancement up to 126% can be achieved using the hybrid nanofluid spray cooling compared to water spray cooling. The hybrid nanofluid and its spray residue characterization further suggest that high CHF in hybrid nanofluid spray cooling may be due to high latent heat of vaporization and residue wetting and wicking effects. Moreover, the spray cooling efficiency and Nusselt number obtained for hybrid nanofluid spray cooling is more than twice that of water spray cooling. Furthermore, our results indicate that the hybrid nanofluid spray cooling can keep high power electronics of current and future electric vehicles below their failure temperatures, while the same cannot be achieved using water and dielectric fluid spray cooling.</description><subject>Cooling</subject><subject>Critical heat flux</subject><subject>Electric vehicles</subject><subject>Electronics</subject><subject>Energy dissipation</subject><subject>EV high power electronics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heat flux</subject><subject>Heat of vaporization</subject><subject>Heat transfer</subject><subject>High heat flux devices</subject><subject>Hybrid nanofluid spray</subject><subject>Latent heat</subject><subject>Nanofluids</subject><subject>Residues</subject><subject>Spray cooling</subject><subject>Spray residue</subject><subject>Thermal management</subject><subject>Water sprays</subject><subject>Wetting</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PAyEQxTdGE-uf70Ci163AAkuNF9NYNWnipZ4JwtDSbJcVdqs9-dWlaS_ePM3LZN6bmV9R3BI8JpiIu_VYd13TryBudAPtckwxpWNCJOPspBgRWVclF1icZl3xSckqQs6Li5TWGBMqazYqfl52H9Fb1Oo2uGbIKnVR75AJofHtEnUQXcjxrQGkW4t8n1CE5O0AKA3R6dwH58D06R4twpeOFh0PQtmll7CBtkfBoZVfrtAKdI_ynm9kYesNpKvizOkmwfWxXhbvs6fF9KWcvz2_Th_npakY7ctaSOMottZoplltDOYcG6KBiZoDCDASKDeCTfhE1JXgnNLcBNDYUG1ldVncHHK7GD4HSL1ahyG2eaWioqaVJFKSPPVwmDIxpBTBqS76jY47RbDaI1dr9Re52iNXB-TZPjvYIX-y9RBVMh4yOutjJqRs8P8L-gUSWJWy</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Riaz Siddiqui, Farooq</creator><creator>Tso, Chi-Yan</creator><creator>Qiu, Huihe</creator><creator>Chao, Christopher Y.H.</creator><creator>Chung Fu, Sau</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20220705</creationdate><title>Hybrid nanofluid spray cooling performance and its residue surface effects: Toward thermal management of high heat flux devices</title><author>Riaz Siddiqui, Farooq ; Tso, Chi-Yan ; Qiu, Huihe ; Chao, Christopher Y.H. ; Chung Fu, Sau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-768cf20ddca4a47cc0550c1ae4675ee6ec8e25c64959673655226eceea0c2ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cooling</topic><topic>Critical heat flux</topic><topic>Electric vehicles</topic><topic>Electronics</topic><topic>Energy dissipation</topic><topic>EV high power electronics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heat flux</topic><topic>Heat of vaporization</topic><topic>Heat transfer</topic><topic>High heat flux devices</topic><topic>Hybrid nanofluid spray</topic><topic>Latent heat</topic><topic>Nanofluids</topic><topic>Residues</topic><topic>Spray cooling</topic><topic>Spray residue</topic><topic>Thermal management</topic><topic>Water sprays</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riaz Siddiqui, Farooq</creatorcontrib><creatorcontrib>Tso, Chi-Yan</creatorcontrib><creatorcontrib>Qiu, Huihe</creatorcontrib><creatorcontrib>Chao, Christopher Y.H.</creatorcontrib><creatorcontrib>Chung Fu, Sau</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riaz Siddiqui, Farooq</au><au>Tso, Chi-Yan</au><au>Qiu, Huihe</au><au>Chao, Christopher Y.H.</au><au>Chung Fu, Sau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid nanofluid spray cooling performance and its residue surface effects: Toward thermal management of high heat flux devices</atitle><jtitle>Applied thermal engineering</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>211</volume><spage>118454</spage><pages>118454-</pages><artnum>118454</artnum><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Hybrid nanofluid spray system.shows critical heat flux enhancement up to 126%.•Critical heat flux enhancement may be due to residue wetting and wicking effects.•Hybrid nanofluid sprays show higher heat transfer coefficient than existing fluids.•Existing fluid sprays fail to effectively cool electric vehicle power electronics.•Hybrid nanofluid sprays can effectively cool electric vehicle power electronics. In recent years, heat dissipation in high heat flux devices remarkably increased and it is anticipated to reach unprecedented levels in future devices, mainly due to increased power density, compact packaging and high-performance requirements. To address this challenge, in current research, we initially investigate the spray cooling performance and spray residue surface effects of the next generation thermal fluid, called hybrid nanofluid. Subsequently, we investigate the hybrid nanofluid spray cooling potential to address heat dissipation issues in a high heat flux application, that is, the electric vehicle (EV) high power electronics. Our results demonstrate that the critical heat flux (CHF) enhancement up to 126% can be achieved using the hybrid nanofluid spray cooling compared to water spray cooling. The hybrid nanofluid and its spray residue characterization further suggest that high CHF in hybrid nanofluid spray cooling may be due to high latent heat of vaporization and residue wetting and wicking effects. Moreover, the spray cooling efficiency and Nusselt number obtained for hybrid nanofluid spray cooling is more than twice that of water spray cooling. Furthermore, our results indicate that the hybrid nanofluid spray cooling can keep high power electronics of current and future electric vehicles below their failure temperatures, while the same cannot be achieved using water and dielectric fluid spray cooling.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2022.118454</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2022-07, Vol.211, p.118454, Article 118454
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2672381881
source Elsevier ScienceDirect Journals
subjects Cooling
Critical heat flux
Electric vehicles
Electronics
Energy dissipation
EV high power electronics
Fluid dynamics
Fluid flow
Heat flux
Heat of vaporization
Heat transfer
High heat flux devices
Hybrid nanofluid spray
Latent heat
Nanofluids
Residues
Spray cooling
Spray residue
Thermal management
Water sprays
Wetting
title Hybrid nanofluid spray cooling performance and its residue surface effects: Toward thermal management of high heat flux devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20nanofluid%20spray%20cooling%20performance%20and%20its%20residue%20surface%20effects:%20Toward%20thermal%20management%20of%20high%20heat%20flux%20devices&rft.jtitle=Applied%20thermal%20engineering&rft.au=Riaz%20Siddiqui,%20Farooq&rft.date=2022-07-05&rft.volume=211&rft.spage=118454&rft.pages=118454-&rft.artnum=118454&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2022.118454&rft_dat=%3Cproquest_cross%3E2672381881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672381881&rft_id=info:pmid/&rft_els_id=S1359431122004094&rfr_iscdi=true