Flexoelectric nanostructure design using explicit topology optimization
Flexoelectricity is the coupling between polarization and strain gradient. As the large strain gradient leads to a strong flexoelectric effect, the design of flexoelectric nano-structure via topology optimization has seen growing attentions. In the present work, an explicit topology optimization fra...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2022-05, Vol.394, p.114943, Article 114943 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 114943 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 394 |
creator | Zhang, Weisheng Yan, Xiaoye Meng, Yao Zhang, Chunli Youn, Sung-Kie Guo, Xu |
description | Flexoelectricity is the coupling between polarization and strain gradient. As the large strain gradient leads to a strong flexoelectric effect, the design of flexoelectric nano-structure via topology optimization has seen growing attentions. In the present work, an explicit topology optimization framework is proposed for flexoelectric structures design. To achieve this purpose, the Moving Morphable Void (MMV)-based approach is employed in the context of Isogeometric Analysis (IGA) combined with the Trimming Surface Analysis (TSA). Energy conversion factor and effective electric polarizability are respectively optimized to improve the flexoelectric performance of the nanostructure. Performing design under the explicit framework coupled with IGA can bring several advantages. Due to the use of NURBS basis functions of IGA, the required continuity in the approximation of the PDEs of flexoelectricity can be satisfied straightforwardly. Furthermore, with the use of the TSA technique, the occurrence of weak/gray material, which may cause numerical instability in flexoelectricity design, can be avoided. Also due to the explicit geometry description in MMV, the optimized result can be imported to the CAD system directly, which is significant for nanoscale structure from manufacturing perspective. Several representative numerical examples for topology optimization of flexoelectric structures are presented to demonstrate the effectiveness and advantages of the proposed approach. |
doi_str_mv | 10.1016/j.cma.2022.114943 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672381776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782522002079</els_id><sourcerecordid>2672381776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-f9cb00af9e28d22bcba4b47cb090ec37ccf37d6b07beb7dbe6a08f9a87409a143</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz61J-pEUT7K4q7DgRc8hSaclpdvUJJVdf71Z6tm5DAzvMzM8CN0TnBFMqsc-0weZUUxpRkhRF_kFWhHO6pSSnF-iFcZFmTJOy2t0432PY3FCV2i3HeBoYQAdnNHJKEfrg5t1mB0kDXjTjcnszdglcJwGo01Igp3sYLtTYqdgDuZHBmPHW3TVysHD3V9fo8_ty8fmNd2_7942z_tU07IMaVtrhbFsa6C8oVRpJQtVsDisMeicad3mrKkUZgoUaxRUEvO2lpwVuJakyNfoYdk7Ofs1gw-it7Mb40lBK0ZzThirYoosKe2s9w5aMTlzkO4kCBZnX6IX0Zc4-xKLr8g8LQzE978NOOG1gVFDY1y0Ixpr_qF_ARuLdQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672381776</pqid></control><display><type>article</type><title>Flexoelectric nanostructure design using explicit topology optimization</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Weisheng ; Yan, Xiaoye ; Meng, Yao ; Zhang, Chunli ; Youn, Sung-Kie ; Guo, Xu</creator><creatorcontrib>Zhang, Weisheng ; Yan, Xiaoye ; Meng, Yao ; Zhang, Chunli ; Youn, Sung-Kie ; Guo, Xu</creatorcontrib><description>Flexoelectricity is the coupling between polarization and strain gradient. As the large strain gradient leads to a strong flexoelectric effect, the design of flexoelectric nano-structure via topology optimization has seen growing attentions. In the present work, an explicit topology optimization framework is proposed for flexoelectric structures design. To achieve this purpose, the Moving Morphable Void (MMV)-based approach is employed in the context of Isogeometric Analysis (IGA) combined with the Trimming Surface Analysis (TSA). Energy conversion factor and effective electric polarizability are respectively optimized to improve the flexoelectric performance of the nanostructure. Performing design under the explicit framework coupled with IGA can bring several advantages. Due to the use of NURBS basis functions of IGA, the required continuity in the approximation of the PDEs of flexoelectricity can be satisfied straightforwardly. Furthermore, with the use of the TSA technique, the occurrence of weak/gray material, which may cause numerical instability in flexoelectricity design, can be avoided. Also due to the explicit geometry description in MMV, the optimized result can be imported to the CAD system directly, which is significant for nanoscale structure from manufacturing perspective. Several representative numerical examples for topology optimization of flexoelectric structures are presented to demonstrate the effectiveness and advantages of the proposed approach.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2022.114943</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Basis functions ; Design optimization ; Energy conversion ; Flexoelectricity ; Isogeometric Analysis (IGA) ; Mathematical analysis ; Moving Morphable Void (MMV) ; Nanostructure ; Optimization ; Surface analysis (chemical) ; Topology optimization ; Trimmed Surface Analysis (TSA)</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-05, Vol.394, p.114943, Article 114943</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-f9cb00af9e28d22bcba4b47cb090ec37ccf37d6b07beb7dbe6a08f9a87409a143</citedby><cites>FETCH-LOGICAL-c255t-f9cb00af9e28d22bcba4b47cb090ec37ccf37d6b07beb7dbe6a08f9a87409a143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782522002079$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Weisheng</creatorcontrib><creatorcontrib>Yan, Xiaoye</creatorcontrib><creatorcontrib>Meng, Yao</creatorcontrib><creatorcontrib>Zhang, Chunli</creatorcontrib><creatorcontrib>Youn, Sung-Kie</creatorcontrib><creatorcontrib>Guo, Xu</creatorcontrib><title>Flexoelectric nanostructure design using explicit topology optimization</title><title>Computer methods in applied mechanics and engineering</title><description>Flexoelectricity is the coupling between polarization and strain gradient. As the large strain gradient leads to a strong flexoelectric effect, the design of flexoelectric nano-structure via topology optimization has seen growing attentions. In the present work, an explicit topology optimization framework is proposed for flexoelectric structures design. To achieve this purpose, the Moving Morphable Void (MMV)-based approach is employed in the context of Isogeometric Analysis (IGA) combined with the Trimming Surface Analysis (TSA). Energy conversion factor and effective electric polarizability are respectively optimized to improve the flexoelectric performance of the nanostructure. Performing design under the explicit framework coupled with IGA can bring several advantages. Due to the use of NURBS basis functions of IGA, the required continuity in the approximation of the PDEs of flexoelectricity can be satisfied straightforwardly. Furthermore, with the use of the TSA technique, the occurrence of weak/gray material, which may cause numerical instability in flexoelectricity design, can be avoided. Also due to the explicit geometry description in MMV, the optimized result can be imported to the CAD system directly, which is significant for nanoscale structure from manufacturing perspective. Several representative numerical examples for topology optimization of flexoelectric structures are presented to demonstrate the effectiveness and advantages of the proposed approach.</description><subject>Basis functions</subject><subject>Design optimization</subject><subject>Energy conversion</subject><subject>Flexoelectricity</subject><subject>Isogeometric Analysis (IGA)</subject><subject>Mathematical analysis</subject><subject>Moving Morphable Void (MMV)</subject><subject>Nanostructure</subject><subject>Optimization</subject><subject>Surface analysis (chemical)</subject><subject>Topology optimization</subject><subject>Trimmed Surface Analysis (TSA)</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz61J-pEUT7K4q7DgRc8hSaclpdvUJJVdf71Z6tm5DAzvMzM8CN0TnBFMqsc-0weZUUxpRkhRF_kFWhHO6pSSnF-iFcZFmTJOy2t0432PY3FCV2i3HeBoYQAdnNHJKEfrg5t1mB0kDXjTjcnszdglcJwGo01Igp3sYLtTYqdgDuZHBmPHW3TVysHD3V9fo8_ty8fmNd2_7942z_tU07IMaVtrhbFsa6C8oVRpJQtVsDisMeicad3mrKkUZgoUaxRUEvO2lpwVuJakyNfoYdk7Ofs1gw-it7Mb40lBK0ZzThirYoosKe2s9w5aMTlzkO4kCBZnX6IX0Zc4-xKLr8g8LQzE978NOOG1gVFDY1y0Ixpr_qF_ARuLdQA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Zhang, Weisheng</creator><creator>Yan, Xiaoye</creator><creator>Meng, Yao</creator><creator>Zhang, Chunli</creator><creator>Youn, Sung-Kie</creator><creator>Guo, Xu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220501</creationdate><title>Flexoelectric nanostructure design using explicit topology optimization</title><author>Zhang, Weisheng ; Yan, Xiaoye ; Meng, Yao ; Zhang, Chunli ; Youn, Sung-Kie ; Guo, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-f9cb00af9e28d22bcba4b47cb090ec37ccf37d6b07beb7dbe6a08f9a87409a143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Basis functions</topic><topic>Design optimization</topic><topic>Energy conversion</topic><topic>Flexoelectricity</topic><topic>Isogeometric Analysis (IGA)</topic><topic>Mathematical analysis</topic><topic>Moving Morphable Void (MMV)</topic><topic>Nanostructure</topic><topic>Optimization</topic><topic>Surface analysis (chemical)</topic><topic>Topology optimization</topic><topic>Trimmed Surface Analysis (TSA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Weisheng</creatorcontrib><creatorcontrib>Yan, Xiaoye</creatorcontrib><creatorcontrib>Meng, Yao</creatorcontrib><creatorcontrib>Zhang, Chunli</creatorcontrib><creatorcontrib>Youn, Sung-Kie</creatorcontrib><creatorcontrib>Guo, Xu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Weisheng</au><au>Yan, Xiaoye</au><au>Meng, Yao</au><au>Zhang, Chunli</au><au>Youn, Sung-Kie</au><au>Guo, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexoelectric nanostructure design using explicit topology optimization</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>394</volume><spage>114943</spage><pages>114943-</pages><artnum>114943</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Flexoelectricity is the coupling between polarization and strain gradient. As the large strain gradient leads to a strong flexoelectric effect, the design of flexoelectric nano-structure via topology optimization has seen growing attentions. In the present work, an explicit topology optimization framework is proposed for flexoelectric structures design. To achieve this purpose, the Moving Morphable Void (MMV)-based approach is employed in the context of Isogeometric Analysis (IGA) combined with the Trimming Surface Analysis (TSA). Energy conversion factor and effective electric polarizability are respectively optimized to improve the flexoelectric performance of the nanostructure. Performing design under the explicit framework coupled with IGA can bring several advantages. Due to the use of NURBS basis functions of IGA, the required continuity in the approximation of the PDEs of flexoelectricity can be satisfied straightforwardly. Furthermore, with the use of the TSA technique, the occurrence of weak/gray material, which may cause numerical instability in flexoelectricity design, can be avoided. Also due to the explicit geometry description in MMV, the optimized result can be imported to the CAD system directly, which is significant for nanoscale structure from manufacturing perspective. Several representative numerical examples for topology optimization of flexoelectric structures are presented to demonstrate the effectiveness and advantages of the proposed approach.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2022.114943</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2022-05, Vol.394, p.114943, Article 114943 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_2672381776 |
source | Elsevier ScienceDirect Journals |
subjects | Basis functions Design optimization Energy conversion Flexoelectricity Isogeometric Analysis (IGA) Mathematical analysis Moving Morphable Void (MMV) Nanostructure Optimization Surface analysis (chemical) Topology optimization Trimmed Surface Analysis (TSA) |
title | Flexoelectric nanostructure design using explicit topology optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexoelectric%20nanostructure%20design%20using%20explicit%20topology%20optimization&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Zhang,%20Weisheng&rft.date=2022-05-01&rft.volume=394&rft.spage=114943&rft.pages=114943-&rft.artnum=114943&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2022.114943&rft_dat=%3Cproquest_cross%3E2672381776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672381776&rft_id=info:pmid/&rft_els_id=S0045782522002079&rfr_iscdi=true |