Flexoelectric nanostructure design using explicit topology optimization

Flexoelectricity is the coupling between polarization and strain gradient. As the large strain gradient leads to a strong flexoelectric effect, the design of flexoelectric nano-structure via topology optimization has seen growing attentions. In the present work, an explicit topology optimization fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2022-05, Vol.394, p.114943, Article 114943
Hauptverfasser: Zhang, Weisheng, Yan, Xiaoye, Meng, Yao, Zhang, Chunli, Youn, Sung-Kie, Guo, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114943
container_title Computer methods in applied mechanics and engineering
container_volume 394
creator Zhang, Weisheng
Yan, Xiaoye
Meng, Yao
Zhang, Chunli
Youn, Sung-Kie
Guo, Xu
description Flexoelectricity is the coupling between polarization and strain gradient. As the large strain gradient leads to a strong flexoelectric effect, the design of flexoelectric nano-structure via topology optimization has seen growing attentions. In the present work, an explicit topology optimization framework is proposed for flexoelectric structures design. To achieve this purpose, the Moving Morphable Void (MMV)-based approach is employed in the context of Isogeometric Analysis (IGA) combined with the Trimming Surface Analysis (TSA). Energy conversion factor and effective electric polarizability are respectively optimized to improve the flexoelectric performance of the nanostructure. Performing design under the explicit framework coupled with IGA can bring several advantages. Due to the use of NURBS basis functions of IGA, the required continuity in the approximation of the PDEs of flexoelectricity can be satisfied straightforwardly. Furthermore, with the use of the TSA technique, the occurrence of weak/gray material, which may cause numerical instability in flexoelectricity design, can be avoided. Also due to the explicit geometry description in MMV, the optimized result can be imported to the CAD system directly, which is significant for nanoscale structure from manufacturing perspective. Several representative numerical examples for topology optimization of flexoelectric structures are presented to demonstrate the effectiveness and advantages of the proposed approach.
doi_str_mv 10.1016/j.cma.2022.114943
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672381776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782522002079</els_id><sourcerecordid>2672381776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-f9cb00af9e28d22bcba4b47cb090ec37ccf37d6b07beb7dbe6a08f9a87409a143</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz61J-pEUT7K4q7DgRc8hSaclpdvUJJVdf71Z6tm5DAzvMzM8CN0TnBFMqsc-0weZUUxpRkhRF_kFWhHO6pSSnF-iFcZFmTJOy2t0432PY3FCV2i3HeBoYQAdnNHJKEfrg5t1mB0kDXjTjcnszdglcJwGo01Igp3sYLtTYqdgDuZHBmPHW3TVysHD3V9fo8_ty8fmNd2_7942z_tU07IMaVtrhbFsa6C8oVRpJQtVsDisMeicad3mrKkUZgoUaxRUEvO2lpwVuJakyNfoYdk7Ofs1gw-it7Mb40lBK0ZzThirYoosKe2s9w5aMTlzkO4kCBZnX6IX0Zc4-xKLr8g8LQzE978NOOG1gVFDY1y0Ixpr_qF_ARuLdQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672381776</pqid></control><display><type>article</type><title>Flexoelectric nanostructure design using explicit topology optimization</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Weisheng ; Yan, Xiaoye ; Meng, Yao ; Zhang, Chunli ; Youn, Sung-Kie ; Guo, Xu</creator><creatorcontrib>Zhang, Weisheng ; Yan, Xiaoye ; Meng, Yao ; Zhang, Chunli ; Youn, Sung-Kie ; Guo, Xu</creatorcontrib><description>Flexoelectricity is the coupling between polarization and strain gradient. As the large strain gradient leads to a strong flexoelectric effect, the design of flexoelectric nano-structure via topology optimization has seen growing attentions. In the present work, an explicit topology optimization framework is proposed for flexoelectric structures design. To achieve this purpose, the Moving Morphable Void (MMV)-based approach is employed in the context of Isogeometric Analysis (IGA) combined with the Trimming Surface Analysis (TSA). Energy conversion factor and effective electric polarizability are respectively optimized to improve the flexoelectric performance of the nanostructure. Performing design under the explicit framework coupled with IGA can bring several advantages. Due to the use of NURBS basis functions of IGA, the required continuity in the approximation of the PDEs of flexoelectricity can be satisfied straightforwardly. Furthermore, with the use of the TSA technique, the occurrence of weak/gray material, which may cause numerical instability in flexoelectricity design, can be avoided. Also due to the explicit geometry description in MMV, the optimized result can be imported to the CAD system directly, which is significant for nanoscale structure from manufacturing perspective. Several representative numerical examples for topology optimization of flexoelectric structures are presented to demonstrate the effectiveness and advantages of the proposed approach.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2022.114943</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Basis functions ; Design optimization ; Energy conversion ; Flexoelectricity ; Isogeometric Analysis (IGA) ; Mathematical analysis ; Moving Morphable Void (MMV) ; Nanostructure ; Optimization ; Surface analysis (chemical) ; Topology optimization ; Trimmed Surface Analysis (TSA)</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-05, Vol.394, p.114943, Article 114943</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-f9cb00af9e28d22bcba4b47cb090ec37ccf37d6b07beb7dbe6a08f9a87409a143</citedby><cites>FETCH-LOGICAL-c255t-f9cb00af9e28d22bcba4b47cb090ec37ccf37d6b07beb7dbe6a08f9a87409a143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782522002079$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Weisheng</creatorcontrib><creatorcontrib>Yan, Xiaoye</creatorcontrib><creatorcontrib>Meng, Yao</creatorcontrib><creatorcontrib>Zhang, Chunli</creatorcontrib><creatorcontrib>Youn, Sung-Kie</creatorcontrib><creatorcontrib>Guo, Xu</creatorcontrib><title>Flexoelectric nanostructure design using explicit topology optimization</title><title>Computer methods in applied mechanics and engineering</title><description>Flexoelectricity is the coupling between polarization and strain gradient. As the large strain gradient leads to a strong flexoelectric effect, the design of flexoelectric nano-structure via topology optimization has seen growing attentions. In the present work, an explicit topology optimization framework is proposed for flexoelectric structures design. To achieve this purpose, the Moving Morphable Void (MMV)-based approach is employed in the context of Isogeometric Analysis (IGA) combined with the Trimming Surface Analysis (TSA). Energy conversion factor and effective electric polarizability are respectively optimized to improve the flexoelectric performance of the nanostructure. Performing design under the explicit framework coupled with IGA can bring several advantages. Due to the use of NURBS basis functions of IGA, the required continuity in the approximation of the PDEs of flexoelectricity can be satisfied straightforwardly. Furthermore, with the use of the TSA technique, the occurrence of weak/gray material, which may cause numerical instability in flexoelectricity design, can be avoided. Also due to the explicit geometry description in MMV, the optimized result can be imported to the CAD system directly, which is significant for nanoscale structure from manufacturing perspective. Several representative numerical examples for topology optimization of flexoelectric structures are presented to demonstrate the effectiveness and advantages of the proposed approach.</description><subject>Basis functions</subject><subject>Design optimization</subject><subject>Energy conversion</subject><subject>Flexoelectricity</subject><subject>Isogeometric Analysis (IGA)</subject><subject>Mathematical analysis</subject><subject>Moving Morphable Void (MMV)</subject><subject>Nanostructure</subject><subject>Optimization</subject><subject>Surface analysis (chemical)</subject><subject>Topology optimization</subject><subject>Trimmed Surface Analysis (TSA)</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz61J-pEUT7K4q7DgRc8hSaclpdvUJJVdf71Z6tm5DAzvMzM8CN0TnBFMqsc-0weZUUxpRkhRF_kFWhHO6pSSnF-iFcZFmTJOy2t0432PY3FCV2i3HeBoYQAdnNHJKEfrg5t1mB0kDXjTjcnszdglcJwGo01Igp3sYLtTYqdgDuZHBmPHW3TVysHD3V9fo8_ty8fmNd2_7942z_tU07IMaVtrhbFsa6C8oVRpJQtVsDisMeicad3mrKkUZgoUaxRUEvO2lpwVuJakyNfoYdk7Ofs1gw-it7Mb40lBK0ZzThirYoosKe2s9w5aMTlzkO4kCBZnX6IX0Zc4-xKLr8g8LQzE978NOOG1gVFDY1y0Ixpr_qF_ARuLdQA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Zhang, Weisheng</creator><creator>Yan, Xiaoye</creator><creator>Meng, Yao</creator><creator>Zhang, Chunli</creator><creator>Youn, Sung-Kie</creator><creator>Guo, Xu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220501</creationdate><title>Flexoelectric nanostructure design using explicit topology optimization</title><author>Zhang, Weisheng ; Yan, Xiaoye ; Meng, Yao ; Zhang, Chunli ; Youn, Sung-Kie ; Guo, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-f9cb00af9e28d22bcba4b47cb090ec37ccf37d6b07beb7dbe6a08f9a87409a143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Basis functions</topic><topic>Design optimization</topic><topic>Energy conversion</topic><topic>Flexoelectricity</topic><topic>Isogeometric Analysis (IGA)</topic><topic>Mathematical analysis</topic><topic>Moving Morphable Void (MMV)</topic><topic>Nanostructure</topic><topic>Optimization</topic><topic>Surface analysis (chemical)</topic><topic>Topology optimization</topic><topic>Trimmed Surface Analysis (TSA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Weisheng</creatorcontrib><creatorcontrib>Yan, Xiaoye</creatorcontrib><creatorcontrib>Meng, Yao</creatorcontrib><creatorcontrib>Zhang, Chunli</creatorcontrib><creatorcontrib>Youn, Sung-Kie</creatorcontrib><creatorcontrib>Guo, Xu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Weisheng</au><au>Yan, Xiaoye</au><au>Meng, Yao</au><au>Zhang, Chunli</au><au>Youn, Sung-Kie</au><au>Guo, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexoelectric nanostructure design using explicit topology optimization</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>394</volume><spage>114943</spage><pages>114943-</pages><artnum>114943</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Flexoelectricity is the coupling between polarization and strain gradient. As the large strain gradient leads to a strong flexoelectric effect, the design of flexoelectric nano-structure via topology optimization has seen growing attentions. In the present work, an explicit topology optimization framework is proposed for flexoelectric structures design. To achieve this purpose, the Moving Morphable Void (MMV)-based approach is employed in the context of Isogeometric Analysis (IGA) combined with the Trimming Surface Analysis (TSA). Energy conversion factor and effective electric polarizability are respectively optimized to improve the flexoelectric performance of the nanostructure. Performing design under the explicit framework coupled with IGA can bring several advantages. Due to the use of NURBS basis functions of IGA, the required continuity in the approximation of the PDEs of flexoelectricity can be satisfied straightforwardly. Furthermore, with the use of the TSA technique, the occurrence of weak/gray material, which may cause numerical instability in flexoelectricity design, can be avoided. Also due to the explicit geometry description in MMV, the optimized result can be imported to the CAD system directly, which is significant for nanoscale structure from manufacturing perspective. Several representative numerical examples for topology optimization of flexoelectric structures are presented to demonstrate the effectiveness and advantages of the proposed approach.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2022.114943</doi></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2022-05, Vol.394, p.114943, Article 114943
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2672381776
source Elsevier ScienceDirect Journals
subjects Basis functions
Design optimization
Energy conversion
Flexoelectricity
Isogeometric Analysis (IGA)
Mathematical analysis
Moving Morphable Void (MMV)
Nanostructure
Optimization
Surface analysis (chemical)
Topology optimization
Trimmed Surface Analysis (TSA)
title Flexoelectric nanostructure design using explicit topology optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexoelectric%20nanostructure%20design%20using%20explicit%20topology%20optimization&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Zhang,%20Weisheng&rft.date=2022-05-01&rft.volume=394&rft.spage=114943&rft.pages=114943-&rft.artnum=114943&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2022.114943&rft_dat=%3Cproquest_cross%3E2672381776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672381776&rft_id=info:pmid/&rft_els_id=S0045782522002079&rfr_iscdi=true