Method of liquid-cooled thermal control for a large-scale pouch lithium-ion battery

•Presents a method of liquid-cooled thermal control to a large-scale pouch battery.•Influence of fluid flowing on battery temperature field is investigated numerically.•Analyzes the glycol solution concentration on battery thermal distribution.•Studies the effect of cooling trigger-time on battery t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2022-07, Vol.211, p.118417, Article 118417
Hauptverfasser: Zhang, Zhendong, Fu, Linxiang, Sheng, Lei, Ye, Wen, Sun, Yuedong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118417
container_title Applied thermal engineering
container_volume 211
creator Zhang, Zhendong
Fu, Linxiang
Sheng, Lei
Ye, Wen
Sun, Yuedong
description •Presents a method of liquid-cooled thermal control to a large-scale pouch battery.•Influence of fluid flowing on battery temperature field is investigated numerically.•Analyzes the glycol solution concentration on battery thermal distribution.•Studies the effect of cooling trigger-time on battery thermal performance.•Simulation effectiveness was authenticated by a constructed thermal test system. Excellent thermal management is very significant in preserving lithium-ion battery cell work-performance and extending cell cycle-life. This work presents a method of thermal control for a large-scale pouch cell by using an existing liquid cooling plate with streamline channels. Numerically, influences of mass flow rates, cooling trigger-time, and glycol solution concentration on the cell thermal distribution are analyzed in detail. Experimentally, the simulation effectiveness is validated by a constructed thermal test system. It is shown that the increasing mass flow rate plays a positive role in crippling the cell temperature rise and difference. However, there is a marginal effect in this condition. Effect of postponing cooling trigger-time on promoting the cell thermal homogeneity is negative, when the cooling starts at 31 °C, the final cell temperature and temperature difference beyond 32 °C and 5 °C, respectively. The maximum cell temperature and channel pressure drop increase with increasing glycol solution concentration from 0 to 80%. Experimental validation suggests that the test and simulation results coincide with each other (within 2.5 °C), indicating that a promising availability dwells in present thermal management to manage the cell temperature field under a desirable range. This study would be valuable for one to develop a reliable cooling solution for a battery pack stacked with large-scale pouch cells.
doi_str_mv 10.1016/j.applthermaleng.2022.118417
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672380114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431122003726</els_id><sourcerecordid>2672380114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3b70d0aeec7ca3e184f2433eebb4a4fabc01cbee37083a76cee864ab93ded76f3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEuXjP1iCNcGO3TiVWFBFAamIAZgtx740jtI4tR2k_ntctQsb093wftw9CN1TklNCy4cuV-PYxxb8VvUwbPKCFEVOacWpOEMzWgmWzUtSnqedzRcZZ5ReoqsQOkJoUQk-Q5_vEFtnsGtwb3eTNZl2rgeDT6lYuyF61-PGeaxwr_wGsqBTHR7dpNvkiq2dtpl1A65VjOD3N-iiUX2A29O8Rt-r56_la7b-eHlbPq0zzeZVzFgtiCEKQAutGKSrm4IzBlDXXPFG1ZpQXQMwQSqmRKkBqpKresEMGFE27BrdHXNH73YThCg7N_khVcqiFAWrCKU8qR6PKu1dCB4aOXq7VX4vKZEHjLKTfzHKA0Z5xJjsq6Md0ic_FrwM2sKgwVgPOkrj7P-CfgHWHIYe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672380114</pqid></control><display><type>article</type><title>Method of liquid-cooled thermal control for a large-scale pouch lithium-ion battery</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Zhendong ; Fu, Linxiang ; Sheng, Lei ; Ye, Wen ; Sun, Yuedong</creator><creatorcontrib>Zhang, Zhendong ; Fu, Linxiang ; Sheng, Lei ; Ye, Wen ; Sun, Yuedong</creatorcontrib><description>•Presents a method of liquid-cooled thermal control to a large-scale pouch battery.•Influence of fluid flowing on battery temperature field is investigated numerically.•Analyzes the glycol solution concentration on battery thermal distribution.•Studies the effect of cooling trigger-time on battery thermal performance.•Simulation effectiveness was authenticated by a constructed thermal test system. Excellent thermal management is very significant in preserving lithium-ion battery cell work-performance and extending cell cycle-life. This work presents a method of thermal control for a large-scale pouch cell by using an existing liquid cooling plate with streamline channels. Numerically, influences of mass flow rates, cooling trigger-time, and glycol solution concentration on the cell thermal distribution are analyzed in detail. Experimentally, the simulation effectiveness is validated by a constructed thermal test system. It is shown that the increasing mass flow rate plays a positive role in crippling the cell temperature rise and difference. However, there is a marginal effect in this condition. Effect of postponing cooling trigger-time on promoting the cell thermal homogeneity is negative, when the cooling starts at 31 °C, the final cell temperature and temperature difference beyond 32 °C and 5 °C, respectively. The maximum cell temperature and channel pressure drop increase with increasing glycol solution concentration from 0 to 80%. Experimental validation suggests that the test and simulation results coincide with each other (within 2.5 °C), indicating that a promising availability dwells in present thermal management to manage the cell temperature field under a desirable range. This study would be valuable for one to develop a reliable cooling solution for a battery pack stacked with large-scale pouch cells.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2022.118417</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Batteries ; Cooling ; Cooling rate ; Energy management ; Experimental validation ; Homogeneity ; Large-scale pouch lithium-ion battery ; Liquid cooled thermal management ; Liquid cooling ; Lithium ; Lithium-ion batteries ; Mass flow rate ; Numerical analysis ; Pressure drop ; Rechargeable batteries ; Simulating battery module ; Temperature distribution ; Temperature gradients ; Thermal energy ; Thermal management</subject><ispartof>Applied thermal engineering, 2022-07, Vol.211, p.118417, Article 118417</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 5, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-3b70d0aeec7ca3e184f2433eebb4a4fabc01cbee37083a76cee864ab93ded76f3</citedby><cites>FETCH-LOGICAL-c358t-3b70d0aeec7ca3e184f2433eebb4a4fabc01cbee37083a76cee864ab93ded76f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431122003726$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Zhendong</creatorcontrib><creatorcontrib>Fu, Linxiang</creatorcontrib><creatorcontrib>Sheng, Lei</creatorcontrib><creatorcontrib>Ye, Wen</creatorcontrib><creatorcontrib>Sun, Yuedong</creatorcontrib><title>Method of liquid-cooled thermal control for a large-scale pouch lithium-ion battery</title><title>Applied thermal engineering</title><description>•Presents a method of liquid-cooled thermal control to a large-scale pouch battery.•Influence of fluid flowing on battery temperature field is investigated numerically.•Analyzes the glycol solution concentration on battery thermal distribution.•Studies the effect of cooling trigger-time on battery thermal performance.•Simulation effectiveness was authenticated by a constructed thermal test system. Excellent thermal management is very significant in preserving lithium-ion battery cell work-performance and extending cell cycle-life. This work presents a method of thermal control for a large-scale pouch cell by using an existing liquid cooling plate with streamline channels. Numerically, influences of mass flow rates, cooling trigger-time, and glycol solution concentration on the cell thermal distribution are analyzed in detail. Experimentally, the simulation effectiveness is validated by a constructed thermal test system. It is shown that the increasing mass flow rate plays a positive role in crippling the cell temperature rise and difference. However, there is a marginal effect in this condition. Effect of postponing cooling trigger-time on promoting the cell thermal homogeneity is negative, when the cooling starts at 31 °C, the final cell temperature and temperature difference beyond 32 °C and 5 °C, respectively. The maximum cell temperature and channel pressure drop increase with increasing glycol solution concentration from 0 to 80%. Experimental validation suggests that the test and simulation results coincide with each other (within 2.5 °C), indicating that a promising availability dwells in present thermal management to manage the cell temperature field under a desirable range. This study would be valuable for one to develop a reliable cooling solution for a battery pack stacked with large-scale pouch cells.</description><subject>Batteries</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Energy management</subject><subject>Experimental validation</subject><subject>Homogeneity</subject><subject>Large-scale pouch lithium-ion battery</subject><subject>Liquid cooled thermal management</subject><subject>Liquid cooling</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Mass flow rate</subject><subject>Numerical analysis</subject><subject>Pressure drop</subject><subject>Rechargeable batteries</subject><subject>Simulating battery module</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Thermal energy</subject><subject>Thermal management</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEuXjP1iCNcGO3TiVWFBFAamIAZgtx740jtI4tR2k_ntctQsb093wftw9CN1TklNCy4cuV-PYxxb8VvUwbPKCFEVOacWpOEMzWgmWzUtSnqedzRcZZ5ReoqsQOkJoUQk-Q5_vEFtnsGtwb3eTNZl2rgeDT6lYuyF61-PGeaxwr_wGsqBTHR7dpNvkiq2dtpl1A65VjOD3N-iiUX2A29O8Rt-r56_la7b-eHlbPq0zzeZVzFgtiCEKQAutGKSrm4IzBlDXXPFG1ZpQXQMwQSqmRKkBqpKresEMGFE27BrdHXNH73YThCg7N_khVcqiFAWrCKU8qR6PKu1dCB4aOXq7VX4vKZEHjLKTfzHKA0Z5xJjsq6Md0ic_FrwM2sKgwVgPOkrj7P-CfgHWHIYe</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Zhang, Zhendong</creator><creator>Fu, Linxiang</creator><creator>Sheng, Lei</creator><creator>Ye, Wen</creator><creator>Sun, Yuedong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20220705</creationdate><title>Method of liquid-cooled thermal control for a large-scale pouch lithium-ion battery</title><author>Zhang, Zhendong ; Fu, Linxiang ; Sheng, Lei ; Ye, Wen ; Sun, Yuedong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3b70d0aeec7ca3e184f2433eebb4a4fabc01cbee37083a76cee864ab93ded76f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Energy management</topic><topic>Experimental validation</topic><topic>Homogeneity</topic><topic>Large-scale pouch lithium-ion battery</topic><topic>Liquid cooled thermal management</topic><topic>Liquid cooling</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Mass flow rate</topic><topic>Numerical analysis</topic><topic>Pressure drop</topic><topic>Rechargeable batteries</topic><topic>Simulating battery module</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Thermal energy</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhendong</creatorcontrib><creatorcontrib>Fu, Linxiang</creatorcontrib><creatorcontrib>Sheng, Lei</creatorcontrib><creatorcontrib>Ye, Wen</creatorcontrib><creatorcontrib>Sun, Yuedong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhendong</au><au>Fu, Linxiang</au><au>Sheng, Lei</au><au>Ye, Wen</au><au>Sun, Yuedong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method of liquid-cooled thermal control for a large-scale pouch lithium-ion battery</atitle><jtitle>Applied thermal engineering</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>211</volume><spage>118417</spage><pages>118417-</pages><artnum>118417</artnum><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Presents a method of liquid-cooled thermal control to a large-scale pouch battery.•Influence of fluid flowing on battery temperature field is investigated numerically.•Analyzes the glycol solution concentration on battery thermal distribution.•Studies the effect of cooling trigger-time on battery thermal performance.•Simulation effectiveness was authenticated by a constructed thermal test system. Excellent thermal management is very significant in preserving lithium-ion battery cell work-performance and extending cell cycle-life. This work presents a method of thermal control for a large-scale pouch cell by using an existing liquid cooling plate with streamline channels. Numerically, influences of mass flow rates, cooling trigger-time, and glycol solution concentration on the cell thermal distribution are analyzed in detail. Experimentally, the simulation effectiveness is validated by a constructed thermal test system. It is shown that the increasing mass flow rate plays a positive role in crippling the cell temperature rise and difference. However, there is a marginal effect in this condition. Effect of postponing cooling trigger-time on promoting the cell thermal homogeneity is negative, when the cooling starts at 31 °C, the final cell temperature and temperature difference beyond 32 °C and 5 °C, respectively. The maximum cell temperature and channel pressure drop increase with increasing glycol solution concentration from 0 to 80%. Experimental validation suggests that the test and simulation results coincide with each other (within 2.5 °C), indicating that a promising availability dwells in present thermal management to manage the cell temperature field under a desirable range. This study would be valuable for one to develop a reliable cooling solution for a battery pack stacked with large-scale pouch cells.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2022.118417</doi></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2022-07, Vol.211, p.118417, Article 118417
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2672380114
source Elsevier ScienceDirect Journals
subjects Batteries
Cooling
Cooling rate
Energy management
Experimental validation
Homogeneity
Large-scale pouch lithium-ion battery
Liquid cooled thermal management
Liquid cooling
Lithium
Lithium-ion batteries
Mass flow rate
Numerical analysis
Pressure drop
Rechargeable batteries
Simulating battery module
Temperature distribution
Temperature gradients
Thermal energy
Thermal management
title Method of liquid-cooled thermal control for a large-scale pouch lithium-ion battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20of%20liquid-cooled%20thermal%20control%20for%20a%20large-scale%20pouch%20lithium-ion%20battery&rft.jtitle=Applied%20thermal%20engineering&rft.au=Zhang,%20Zhendong&rft.date=2022-07-05&rft.volume=211&rft.spage=118417&rft.pages=118417-&rft.artnum=118417&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2022.118417&rft_dat=%3Cproquest_cross%3E2672380114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672380114&rft_id=info:pmid/&rft_els_id=S1359431122003726&rfr_iscdi=true