Satellite In Situ Electron Density Observations of the Midlatitude Storm Enhanced Density on the Noon Meridional Plane in the F Region During the 20 November 2003 Magnetic Storm

Ionospheric storm enhanced density (SED) has been extensively investigated using total electron content deduced from GPS ground and satellite‐borne receivers. However, dayside in situ electron density measurements have not been analyzed in detail for SEDs yet. We report in situ electron density meas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2022-05, Vol.127 (5), p.n/a
Hauptverfasser: Lin, Chin S., Sutton, Eric K., Wang, Wenbin, Cai, Xuguang, Liu, Guiping, Henney, Carl J., Cooke, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Journal of geophysical research. Space physics
container_volume 127
creator Lin, Chin S.
Sutton, Eric K.
Wang, Wenbin
Cai, Xuguang
Liu, Guiping
Henney, Carl J.
Cooke, David L.
description Ionospheric storm enhanced density (SED) has been extensively investigated using total electron content deduced from GPS ground and satellite‐borne receivers. However, dayside in situ electron density measurements have not been analyzed in detail for SEDs yet. We report in situ electron density measurements of a SED event in the Northern Hemisphere (NH) at the noon meridian plane measured by the Challenging Minisatellite Payload (CHAMP) polar‐orbiting satellite at about 390 km altitude during the 20 November 2003 magnetic storm. The CHAMP satellite measurements render rare documentation about the dayside SED's life cycle at a fixed magnetic local time (MLT) through multiple passes. Solar wind drivers triggered the SED onset and controlled its lifecycle through its growth and retreat phases. The SED electron density enhancement extended from the equatorial ionization anomaly to the noon cusp. The midlatitude electron density increased to a maximum at the end of the growth phase. Afterward, the dayside SED region retreated gradually to lower magnetic latitudes. The observations showed a hemisphere asymmetry, with the NH electron density exhibiting a more significant enhancement. The simulations using the Thermosphere Ionosphere Electrodynamic General Circulation model show a good agreement with the CHAMP observations. The simulations indicate that the dayside midlatitude electron density enhancement has a complicated dependence on vertical ion drift, neutral wind, magnetic latitude, MLT, and the height of the F2 layer. Finally, we discuss the notion of using the mean cross‐polar cap electric field as a proxy for assessing the effects of solar wind drivers on producing midlatitude electron density enhancement. Plain Language Summary Ground radar and GPS stations have frequently detected enhancement of ionospheric electron density at midlatitudes and in the polar cap during magnetic storms. However, the storm enhanced density (SED) structure onset has not been observed before. We report in situ satellite observations of the SED onset near 400 km at the noon meridian plane during an intense magnetic storm. It provides clear evidence about the life cycle of ionospheric electron density enhancement, starting from its onset at noon midlatitudes, building up to a maximum value, and retreating to lower latitudes. The midlatitude ionospheric electron density was mainly enhanced in the Northern Hemisphere, triggered by the passage of a solar wind dynamic pressure shoc
doi_str_mv 10.1029/2021JA029831
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672281642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672281642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3456-8361c29bcfe4de25d05d952971c667094a59ed4ada1b806aa7b791ab1cd290523</originalsourceid><addsrcrecordid>eNp9kdFOwyAUhhujicvcnQ9A4q1ToKUtl8vcpsap2fS6oXA6MR1VoJo9lm8otWq8khv-_Hz_OTmcKDom-Ixgys8ppuR6ElQek71oQEnKxzzBdP9Hxzk-jEbOPeNw8mARNog-1sJDXWsP6MqgtfYtmtUgvW0MugDjtN-hu9KBfRNeN8ahpkL-CdBSqzo4vlWA1r6xWzQzT8JIUL-xUKEjb5sglmC1CnlRo_taGEC6f5yjFWx016u12my-PIpD5g22JdigcYyWYmPAa9k3OooOKlE7GH3fw-hxPnuYXo5v7hZX08nNWMYJS8d5nBJJeSkrSBRQpjBTnFGeEZmmGeaJYBxUIpQgZY5TIbIy40SURCrKMaPxMDrp677Y5rUF54vnprVhAlfQNKM0_GDSUac9JW3jnIWqeLF6K-yuILjo9lL83UvA4x5_1zXs_mWL68VqwjLC0vgT7A2OdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672281642</pqid></control><display><type>article</type><title>Satellite In Situ Electron Density Observations of the Midlatitude Storm Enhanced Density on the Noon Meridional Plane in the F Region During the 20 November 2003 Magnetic Storm</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><creator>Lin, Chin S. ; Sutton, Eric K. ; Wang, Wenbin ; Cai, Xuguang ; Liu, Guiping ; Henney, Carl J. ; Cooke, David L.</creator><creatorcontrib>Lin, Chin S. ; Sutton, Eric K. ; Wang, Wenbin ; Cai, Xuguang ; Liu, Guiping ; Henney, Carl J. ; Cooke, David L.</creatorcontrib><description>Ionospheric storm enhanced density (SED) has been extensively investigated using total electron content deduced from GPS ground and satellite‐borne receivers. However, dayside in situ electron density measurements have not been analyzed in detail for SEDs yet. We report in situ electron density measurements of a SED event in the Northern Hemisphere (NH) at the noon meridian plane measured by the Challenging Minisatellite Payload (CHAMP) polar‐orbiting satellite at about 390 km altitude during the 20 November 2003 magnetic storm. The CHAMP satellite measurements render rare documentation about the dayside SED's life cycle at a fixed magnetic local time (MLT) through multiple passes. Solar wind drivers triggered the SED onset and controlled its lifecycle through its growth and retreat phases. The SED electron density enhancement extended from the equatorial ionization anomaly to the noon cusp. The midlatitude electron density increased to a maximum at the end of the growth phase. Afterward, the dayside SED region retreated gradually to lower magnetic latitudes. The observations showed a hemisphere asymmetry, with the NH electron density exhibiting a more significant enhancement. The simulations using the Thermosphere Ionosphere Electrodynamic General Circulation model show a good agreement with the CHAMP observations. The simulations indicate that the dayside midlatitude electron density enhancement has a complicated dependence on vertical ion drift, neutral wind, magnetic latitude, MLT, and the height of the F2 layer. Finally, we discuss the notion of using the mean cross‐polar cap electric field as a proxy for assessing the effects of solar wind drivers on producing midlatitude electron density enhancement. Plain Language Summary Ground radar and GPS stations have frequently detected enhancement of ionospheric electron density at midlatitudes and in the polar cap during magnetic storms. However, the storm enhanced density (SED) structure onset has not been observed before. We report in situ satellite observations of the SED onset near 400 km at the noon meridian plane during an intense magnetic storm. It provides clear evidence about the life cycle of ionospheric electron density enhancement, starting from its onset at noon midlatitudes, building up to a maximum value, and retreating to lower latitudes. The midlatitude ionospheric electron density was mainly enhanced in the Northern Hemisphere, triggered by the passage of a solar wind dynamic pressure shock front. Global circulation modeling suggests that ion drift and meridional neutral wind are crucial in transporting midlatitude plasmas during a magnetic storm. As a result, the plasma transport produces the observed dayside enhanced density structure. Key Points The first report on satellite in situ measurements of the dayside midlatitude storm enhanced electron density at the noon meridian plane Solar wind drivers triggered the storm enhanced density onset and controlled its lifecycle through its growth and retreat phases Upward vertical ion drift and meridional neutral wind are vital in producing dayside midlatitude electron density enhancement</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2021JA029831</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Drift ; Dynamic pressure ; Electric fields ; Electron density ; Electron density measurement ; Electrons ; Equatorial ionization anomaly ; F 2 region ; F region ; General circulation models ; Geomagnetic storms ; Global positioning systems ; GPS ; Herbivores ; in situ plasma density ; Ionization ; Ionosphere ; Ionospheric electron density ; Ionospheric electrons ; Ionospheric storms ; Latitude ; Life cycles ; Magnetic storms ; Northern Hemisphere ; Plasmas (physics) ; Polar caps ; prompt penetration electric field ; Radar ; Satellite navigation systems ; Satellite observation ; Satellites ; Solar wind ; Solar wind effects ; Storm enhanced density ; Storms ; Thermosphere ; tongue of ionization ; Vertical drift ; Wind effects</subject><ispartof>Journal of geophysical research. Space physics, 2022-05, Vol.127 (5), p.n/a</ispartof><rights>2022. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3456-8361c29bcfe4de25d05d952971c667094a59ed4ada1b806aa7b791ab1cd290523</citedby><cites>FETCH-LOGICAL-c3456-8361c29bcfe4de25d05d952971c667094a59ed4ada1b806aa7b791ab1cd290523</cites><orcidid>0000-0002-1053-2866 ; 0000-0003-4632-1697 ; 0000-0002-6038-6369 ; 0000-0003-1424-7189 ; 0000-0002-6287-4542 ; 0000-0003-3027-8399 ; 0000-0003-2899-6359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021JA029831$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021JA029831$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Lin, Chin S.</creatorcontrib><creatorcontrib>Sutton, Eric K.</creatorcontrib><creatorcontrib>Wang, Wenbin</creatorcontrib><creatorcontrib>Cai, Xuguang</creatorcontrib><creatorcontrib>Liu, Guiping</creatorcontrib><creatorcontrib>Henney, Carl J.</creatorcontrib><creatorcontrib>Cooke, David L.</creatorcontrib><title>Satellite In Situ Electron Density Observations of the Midlatitude Storm Enhanced Density on the Noon Meridional Plane in the F Region During the 20 November 2003 Magnetic Storm</title><title>Journal of geophysical research. Space physics</title><description>Ionospheric storm enhanced density (SED) has been extensively investigated using total electron content deduced from GPS ground and satellite‐borne receivers. However, dayside in situ electron density measurements have not been analyzed in detail for SEDs yet. We report in situ electron density measurements of a SED event in the Northern Hemisphere (NH) at the noon meridian plane measured by the Challenging Minisatellite Payload (CHAMP) polar‐orbiting satellite at about 390 km altitude during the 20 November 2003 magnetic storm. The CHAMP satellite measurements render rare documentation about the dayside SED's life cycle at a fixed magnetic local time (MLT) through multiple passes. Solar wind drivers triggered the SED onset and controlled its lifecycle through its growth and retreat phases. The SED electron density enhancement extended from the equatorial ionization anomaly to the noon cusp. The midlatitude electron density increased to a maximum at the end of the growth phase. Afterward, the dayside SED region retreated gradually to lower magnetic latitudes. The observations showed a hemisphere asymmetry, with the NH electron density exhibiting a more significant enhancement. The simulations using the Thermosphere Ionosphere Electrodynamic General Circulation model show a good agreement with the CHAMP observations. The simulations indicate that the dayside midlatitude electron density enhancement has a complicated dependence on vertical ion drift, neutral wind, magnetic latitude, MLT, and the height of the F2 layer. Finally, we discuss the notion of using the mean cross‐polar cap electric field as a proxy for assessing the effects of solar wind drivers on producing midlatitude electron density enhancement. Plain Language Summary Ground radar and GPS stations have frequently detected enhancement of ionospheric electron density at midlatitudes and in the polar cap during magnetic storms. However, the storm enhanced density (SED) structure onset has not been observed before. We report in situ satellite observations of the SED onset near 400 km at the noon meridian plane during an intense magnetic storm. It provides clear evidence about the life cycle of ionospheric electron density enhancement, starting from its onset at noon midlatitudes, building up to a maximum value, and retreating to lower latitudes. The midlatitude ionospheric electron density was mainly enhanced in the Northern Hemisphere, triggered by the passage of a solar wind dynamic pressure shock front. Global circulation modeling suggests that ion drift and meridional neutral wind are crucial in transporting midlatitude plasmas during a magnetic storm. As a result, the plasma transport produces the observed dayside enhanced density structure. Key Points The first report on satellite in situ measurements of the dayside midlatitude storm enhanced electron density at the noon meridian plane Solar wind drivers triggered the storm enhanced density onset and controlled its lifecycle through its growth and retreat phases Upward vertical ion drift and meridional neutral wind are vital in producing dayside midlatitude electron density enhancement</description><subject>Drift</subject><subject>Dynamic pressure</subject><subject>Electric fields</subject><subject>Electron density</subject><subject>Electron density measurement</subject><subject>Electrons</subject><subject>Equatorial ionization anomaly</subject><subject>F 2 region</subject><subject>F region</subject><subject>General circulation models</subject><subject>Geomagnetic storms</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Herbivores</subject><subject>in situ plasma density</subject><subject>Ionization</subject><subject>Ionosphere</subject><subject>Ionospheric electron density</subject><subject>Ionospheric electrons</subject><subject>Ionospheric storms</subject><subject>Latitude</subject><subject>Life cycles</subject><subject>Magnetic storms</subject><subject>Northern Hemisphere</subject><subject>Plasmas (physics)</subject><subject>Polar caps</subject><subject>prompt penetration electric field</subject><subject>Radar</subject><subject>Satellite navigation systems</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Solar wind</subject><subject>Solar wind effects</subject><subject>Storm enhanced density</subject><subject>Storms</subject><subject>Thermosphere</subject><subject>tongue of ionization</subject><subject>Vertical drift</subject><subject>Wind effects</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kdFOwyAUhhujicvcnQ9A4q1ToKUtl8vcpsap2fS6oXA6MR1VoJo9lm8otWq8khv-_Hz_OTmcKDom-Ixgys8ppuR6ElQek71oQEnKxzzBdP9Hxzk-jEbOPeNw8mARNog-1sJDXWsP6MqgtfYtmtUgvW0MugDjtN-hu9KBfRNeN8ahpkL-CdBSqzo4vlWA1r6xWzQzT8JIUL-xUKEjb5sglmC1CnlRo_taGEC6f5yjFWx016u12my-PIpD5g22JdigcYyWYmPAa9k3OooOKlE7GH3fw-hxPnuYXo5v7hZX08nNWMYJS8d5nBJJeSkrSBRQpjBTnFGeEZmmGeaJYBxUIpQgZY5TIbIy40SURCrKMaPxMDrp677Y5rUF54vnprVhAlfQNKM0_GDSUac9JW3jnIWqeLF6K-yuILjo9lL83UvA4x5_1zXs_mWL68VqwjLC0vgT7A2OdQ</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Lin, Chin S.</creator><creator>Sutton, Eric K.</creator><creator>Wang, Wenbin</creator><creator>Cai, Xuguang</creator><creator>Liu, Guiping</creator><creator>Henney, Carl J.</creator><creator>Cooke, David L.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1053-2866</orcidid><orcidid>https://orcid.org/0000-0003-4632-1697</orcidid><orcidid>https://orcid.org/0000-0002-6038-6369</orcidid><orcidid>https://orcid.org/0000-0003-1424-7189</orcidid><orcidid>https://orcid.org/0000-0002-6287-4542</orcidid><orcidid>https://orcid.org/0000-0003-3027-8399</orcidid><orcidid>https://orcid.org/0000-0003-2899-6359</orcidid></search><sort><creationdate>202205</creationdate><title>Satellite In Situ Electron Density Observations of the Midlatitude Storm Enhanced Density on the Noon Meridional Plane in the F Region During the 20 November 2003 Magnetic Storm</title><author>Lin, Chin S. ; Sutton, Eric K. ; Wang, Wenbin ; Cai, Xuguang ; Liu, Guiping ; Henney, Carl J. ; Cooke, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3456-8361c29bcfe4de25d05d952971c667094a59ed4ada1b806aa7b791ab1cd290523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Drift</topic><topic>Dynamic pressure</topic><topic>Electric fields</topic><topic>Electron density</topic><topic>Electron density measurement</topic><topic>Electrons</topic><topic>Equatorial ionization anomaly</topic><topic>F 2 region</topic><topic>F region</topic><topic>General circulation models</topic><topic>Geomagnetic storms</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Herbivores</topic><topic>in situ plasma density</topic><topic>Ionization</topic><topic>Ionosphere</topic><topic>Ionospheric electron density</topic><topic>Ionospheric electrons</topic><topic>Ionospheric storms</topic><topic>Latitude</topic><topic>Life cycles</topic><topic>Magnetic storms</topic><topic>Northern Hemisphere</topic><topic>Plasmas (physics)</topic><topic>Polar caps</topic><topic>prompt penetration electric field</topic><topic>Radar</topic><topic>Satellite navigation systems</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Solar wind</topic><topic>Solar wind effects</topic><topic>Storm enhanced density</topic><topic>Storms</topic><topic>Thermosphere</topic><topic>tongue of ionization</topic><topic>Vertical drift</topic><topic>Wind effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chin S.</creatorcontrib><creatorcontrib>Sutton, Eric K.</creatorcontrib><creatorcontrib>Wang, Wenbin</creatorcontrib><creatorcontrib>Cai, Xuguang</creatorcontrib><creatorcontrib>Liu, Guiping</creatorcontrib><creatorcontrib>Henney, Carl J.</creatorcontrib><creatorcontrib>Cooke, David L.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chin S.</au><au>Sutton, Eric K.</au><au>Wang, Wenbin</au><au>Cai, Xuguang</au><au>Liu, Guiping</au><au>Henney, Carl J.</au><au>Cooke, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Satellite In Situ Electron Density Observations of the Midlatitude Storm Enhanced Density on the Noon Meridional Plane in the F Region During the 20 November 2003 Magnetic Storm</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2022-05</date><risdate>2022</risdate><volume>127</volume><issue>5</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Ionospheric storm enhanced density (SED) has been extensively investigated using total electron content deduced from GPS ground and satellite‐borne receivers. However, dayside in situ electron density measurements have not been analyzed in detail for SEDs yet. We report in situ electron density measurements of a SED event in the Northern Hemisphere (NH) at the noon meridian plane measured by the Challenging Minisatellite Payload (CHAMP) polar‐orbiting satellite at about 390 km altitude during the 20 November 2003 magnetic storm. The CHAMP satellite measurements render rare documentation about the dayside SED's life cycle at a fixed magnetic local time (MLT) through multiple passes. Solar wind drivers triggered the SED onset and controlled its lifecycle through its growth and retreat phases. The SED electron density enhancement extended from the equatorial ionization anomaly to the noon cusp. The midlatitude electron density increased to a maximum at the end of the growth phase. Afterward, the dayside SED region retreated gradually to lower magnetic latitudes. The observations showed a hemisphere asymmetry, with the NH electron density exhibiting a more significant enhancement. The simulations using the Thermosphere Ionosphere Electrodynamic General Circulation model show a good agreement with the CHAMP observations. The simulations indicate that the dayside midlatitude electron density enhancement has a complicated dependence on vertical ion drift, neutral wind, magnetic latitude, MLT, and the height of the F2 layer. Finally, we discuss the notion of using the mean cross‐polar cap electric field as a proxy for assessing the effects of solar wind drivers on producing midlatitude electron density enhancement. Plain Language Summary Ground radar and GPS stations have frequently detected enhancement of ionospheric electron density at midlatitudes and in the polar cap during magnetic storms. However, the storm enhanced density (SED) structure onset has not been observed before. We report in situ satellite observations of the SED onset near 400 km at the noon meridian plane during an intense magnetic storm. It provides clear evidence about the life cycle of ionospheric electron density enhancement, starting from its onset at noon midlatitudes, building up to a maximum value, and retreating to lower latitudes. The midlatitude ionospheric electron density was mainly enhanced in the Northern Hemisphere, triggered by the passage of a solar wind dynamic pressure shock front. Global circulation modeling suggests that ion drift and meridional neutral wind are crucial in transporting midlatitude plasmas during a magnetic storm. As a result, the plasma transport produces the observed dayside enhanced density structure. Key Points The first report on satellite in situ measurements of the dayside midlatitude storm enhanced electron density at the noon meridian plane Solar wind drivers triggered the storm enhanced density onset and controlled its lifecycle through its growth and retreat phases Upward vertical ion drift and meridional neutral wind are vital in producing dayside midlatitude electron density enhancement</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2021JA029831</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-1053-2866</orcidid><orcidid>https://orcid.org/0000-0003-4632-1697</orcidid><orcidid>https://orcid.org/0000-0002-6038-6369</orcidid><orcidid>https://orcid.org/0000-0003-1424-7189</orcidid><orcidid>https://orcid.org/0000-0002-6287-4542</orcidid><orcidid>https://orcid.org/0000-0003-3027-8399</orcidid><orcidid>https://orcid.org/0000-0003-2899-6359</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2022-05, Vol.127 (5), p.n/a
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_2672281642
source Wiley Online Library Free Content; Access via Wiley Online Library
subjects Drift
Dynamic pressure
Electric fields
Electron density
Electron density measurement
Electrons
Equatorial ionization anomaly
F 2 region
F region
General circulation models
Geomagnetic storms
Global positioning systems
GPS
Herbivores
in situ plasma density
Ionization
Ionosphere
Ionospheric electron density
Ionospheric electrons
Ionospheric storms
Latitude
Life cycles
Magnetic storms
Northern Hemisphere
Plasmas (physics)
Polar caps
prompt penetration electric field
Radar
Satellite navigation systems
Satellite observation
Satellites
Solar wind
Solar wind effects
Storm enhanced density
Storms
Thermosphere
tongue of ionization
Vertical drift
Wind effects
title Satellite In Situ Electron Density Observations of the Midlatitude Storm Enhanced Density on the Noon Meridional Plane in the F Region During the 20 November 2003 Magnetic Storm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Satellite%20In%20Situ%20Electron%20Density%20Observations%20of%20the%20Midlatitude%20Storm%20Enhanced%20Density%20on%20the%20Noon%20Meridional%20Plane%20in%20the%20F%20Region%20During%20the%2020%20November%202003%20Magnetic%20Storm&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Lin,%20Chin%20S.&rft.date=2022-05&rft.volume=127&rft.issue=5&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2021JA029831&rft_dat=%3Cproquest_cross%3E2672281642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672281642&rft_id=info:pmid/&rfr_iscdi=true