A Series of Ternary Metal Chloride Superionic Conductors for High‐Performance All‐Solid‐State Lithium Batteries

Understanding the relationship between structure, ionic conductivity, and synthesis is the key to the development of superionic conductors. Here, a series of Li3‐3xM1+xCl6 (−0.14 < x ≤ 0.5, M = Tb, Dy, Ho, Y, Er, Tm) solid electrolytes with orthorhombic and trigonal structures are reported. The o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2022-06, Vol.12 (21), p.n/a
Hauptverfasser: Liang, Jianwen, Maas, Eveline, Luo, Jing, Li, Xiaona, Chen, Ning, Adair, Keegan R., Li, Weihan, Li, Junjie, Hu, Yongfeng, Liu, Jue, Zhang, Li, Zhao, Shangqian, Lu, Shigang, Wang, Jiantao, Huang, Huan, Zhao, Wenxuan, Parnell, Steven, Smith, Ronald I., Ganapathy, Swapna, Wagemaker, Marnix, Sun, Xueliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page
container_title Advanced energy materials
container_volume 12
creator Liang, Jianwen
Maas, Eveline
Luo, Jing
Li, Xiaona
Chen, Ning
Adair, Keegan R.
Li, Weihan
Li, Junjie
Hu, Yongfeng
Liu, Jue
Zhang, Li
Zhao, Shangqian
Lu, Shigang
Wang, Jiantao
Huang, Huan
Zhao, Wenxuan
Parnell, Steven
Smith, Ronald I.
Ganapathy, Swapna
Wagemaker, Marnix
Sun, Xueliang
description Understanding the relationship between structure, ionic conductivity, and synthesis is the key to the development of superionic conductors. Here, a series of Li3‐3xM1+xCl6 (−0.14 < x ≤ 0.5, M = Tb, Dy, Ho, Y, Er, Tm) solid electrolytes with orthorhombic and trigonal structures are reported. The orthorhombic phase of Li–M–Cl shows an approximately one order of magnitude increase in ionic conductivities when compared to their trigonal phase. Using the Li–Ho–Cl components as an example, their structures, phase transition, ionic conductivity, and electrochemical stability are studied. Molecular dynamics simulations reveal the facile diffusion in the z‐direction in the orthorhombic structure, rationalizing the improved ionic conductivities. All‐solid‐state batteries of NMC811/Li2.73Ho1.09Cl6/In demonstrate excellent electrochemical performance at both 25 and −10 °C. As relevant to the vast number of isostructural halide electrolytes, the present structure control strategy guides the design of halide superionic conductors. A favorable orthorhombic phase in various Li–M–Cl (M = Dy, Ho, Y, Er, Tm) systems which triggers a significant increase in Li+ diffusivity and reduces the activation energy barrier for diffusion is revealed. The findings are expected to aid the discovery of fundamental chemical theories relating to the activity of rare earth metal halides and exploration of new materials with high Li+ conductivity.
doi_str_mv 10.1002/aenm.202103921
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672226161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672226161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4231-b50feb15d856a4b40df9281beb15d20c8441960698159f6371aea144bed625563</originalsourceid><addsrcrecordid>eNqFkEFPwyAUx4nRxGXu6pnEcydQytpjbaYz2dRk80xoSx0LLRNozG5-BD-jn0S2mXmUy4OX3_-98APgGqMxRojcCtm1Y4IIRnFG8BkYYIZpxFKKzk_3mFyCkXMbFA7NAhkPQJ_DpbRKOmgauJK2E3YHF9ILDYu1NlbVEi77bUBMpypYmK7uK2-sg42xcKbe1t-fXy_ShlcrukrCXOvQWRqt6n31wks4V36t-hbeCe8Py67ARSO0k6PfOgSv99NVMYvmzw-PRT6PKkpiHJUJamSJkzpNmKAlRXWTkRSXhx5BVUopzhhiWYqTrGHxBAspMKWlrBlJEhYPwc1x7taa9146zzemD3_UjhM2IYSwoCZQ4yNVWeOclQ3fWtUGERwjvrfL93b5yW4IZMfAh9Jy9w_N8-nT4i_7AwrhgNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672226161</pqid></control><display><type>article</type><title>A Series of Ternary Metal Chloride Superionic Conductors for High‐Performance All‐Solid‐State Lithium Batteries</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Liang, Jianwen ; Maas, Eveline ; Luo, Jing ; Li, Xiaona ; Chen, Ning ; Adair, Keegan R. ; Li, Weihan ; Li, Junjie ; Hu, Yongfeng ; Liu, Jue ; Zhang, Li ; Zhao, Shangqian ; Lu, Shigang ; Wang, Jiantao ; Huang, Huan ; Zhao, Wenxuan ; Parnell, Steven ; Smith, Ronald I. ; Ganapathy, Swapna ; Wagemaker, Marnix ; Sun, Xueliang</creator><creatorcontrib>Liang, Jianwen ; Maas, Eveline ; Luo, Jing ; Li, Xiaona ; Chen, Ning ; Adair, Keegan R. ; Li, Weihan ; Li, Junjie ; Hu, Yongfeng ; Liu, Jue ; Zhang, Li ; Zhao, Shangqian ; Lu, Shigang ; Wang, Jiantao ; Huang, Huan ; Zhao, Wenxuan ; Parnell, Steven ; Smith, Ronald I. ; Ganapathy, Swapna ; Wagemaker, Marnix ; Sun, Xueliang</creatorcontrib><description>Understanding the relationship between structure, ionic conductivity, and synthesis is the key to the development of superionic conductors. Here, a series of Li3‐3xM1+xCl6 (−0.14 &lt; x ≤ 0.5, M = Tb, Dy, Ho, Y, Er, Tm) solid electrolytes with orthorhombic and trigonal structures are reported. The orthorhombic phase of Li–M–Cl shows an approximately one order of magnitude increase in ionic conductivities when compared to their trigonal phase. Using the Li–Ho–Cl components as an example, their structures, phase transition, ionic conductivity, and electrochemical stability are studied. Molecular dynamics simulations reveal the facile diffusion in the z‐direction in the orthorhombic structure, rationalizing the improved ionic conductivities. All‐solid‐state batteries of NMC811/Li2.73Ho1.09Cl6/In demonstrate excellent electrochemical performance at both 25 and −10 °C. As relevant to the vast number of isostructural halide electrolytes, the present structure control strategy guides the design of halide superionic conductors. A favorable orthorhombic phase in various Li–M–Cl (M = Dy, Ho, Y, Er, Tm) systems which triggers a significant increase in Li+ diffusivity and reduces the activation energy barrier for diffusion is revealed. The findings are expected to aid the discovery of fundamental chemical theories relating to the activity of rare earth metal halides and exploration of new materials with high Li+ conductivity.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202103921</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>all‐solid‐state Li batteries ; Conductors ; Dynamic stability ; Electrochemical analysis ; Electrolytes ; energy storage ; Erbium ; halides ; Ion currents ; Ions ; Lithium batteries ; Metal chlorides ; Molecular dynamics ; Molten salt electrolytes ; Orthorhombic phase ; Phase transitions ; Solid electrolytes ; solid‐state electrolytes ; superionic conductors ; Yttrium</subject><ispartof>Advanced energy materials, 2022-06, Vol.12 (21), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4231-b50feb15d856a4b40df9281beb15d20c8441960698159f6371aea144bed625563</citedby><cites>FETCH-LOGICAL-c4231-b50feb15d856a4b40df9281beb15d20c8441960698159f6371aea144bed625563</cites><orcidid>0000-0003-0374-1245 ; 0000-0001-6713-2997 ; 0000-0003-4055-1301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202103921$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202103921$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Liang, Jianwen</creatorcontrib><creatorcontrib>Maas, Eveline</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><creatorcontrib>Li, Xiaona</creatorcontrib><creatorcontrib>Chen, Ning</creatorcontrib><creatorcontrib>Adair, Keegan R.</creatorcontrib><creatorcontrib>Li, Weihan</creatorcontrib><creatorcontrib>Li, Junjie</creatorcontrib><creatorcontrib>Hu, Yongfeng</creatorcontrib><creatorcontrib>Liu, Jue</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhao, Shangqian</creatorcontrib><creatorcontrib>Lu, Shigang</creatorcontrib><creatorcontrib>Wang, Jiantao</creatorcontrib><creatorcontrib>Huang, Huan</creatorcontrib><creatorcontrib>Zhao, Wenxuan</creatorcontrib><creatorcontrib>Parnell, Steven</creatorcontrib><creatorcontrib>Smith, Ronald I.</creatorcontrib><creatorcontrib>Ganapathy, Swapna</creatorcontrib><creatorcontrib>Wagemaker, Marnix</creatorcontrib><creatorcontrib>Sun, Xueliang</creatorcontrib><title>A Series of Ternary Metal Chloride Superionic Conductors for High‐Performance All‐Solid‐State Lithium Batteries</title><title>Advanced energy materials</title><description>Understanding the relationship between structure, ionic conductivity, and synthesis is the key to the development of superionic conductors. Here, a series of Li3‐3xM1+xCl6 (−0.14 &lt; x ≤ 0.5, M = Tb, Dy, Ho, Y, Er, Tm) solid electrolytes with orthorhombic and trigonal structures are reported. The orthorhombic phase of Li–M–Cl shows an approximately one order of magnitude increase in ionic conductivities when compared to their trigonal phase. Using the Li–Ho–Cl components as an example, their structures, phase transition, ionic conductivity, and electrochemical stability are studied. Molecular dynamics simulations reveal the facile diffusion in the z‐direction in the orthorhombic structure, rationalizing the improved ionic conductivities. All‐solid‐state batteries of NMC811/Li2.73Ho1.09Cl6/In demonstrate excellent electrochemical performance at both 25 and −10 °C. As relevant to the vast number of isostructural halide electrolytes, the present structure control strategy guides the design of halide superionic conductors. A favorable orthorhombic phase in various Li–M–Cl (M = Dy, Ho, Y, Er, Tm) systems which triggers a significant increase in Li+ diffusivity and reduces the activation energy barrier for diffusion is revealed. The findings are expected to aid the discovery of fundamental chemical theories relating to the activity of rare earth metal halides and exploration of new materials with high Li+ conductivity.</description><subject>all‐solid‐state Li batteries</subject><subject>Conductors</subject><subject>Dynamic stability</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>energy storage</subject><subject>Erbium</subject><subject>halides</subject><subject>Ion currents</subject><subject>Ions</subject><subject>Lithium batteries</subject><subject>Metal chlorides</subject><subject>Molecular dynamics</subject><subject>Molten salt electrolytes</subject><subject>Orthorhombic phase</subject><subject>Phase transitions</subject><subject>Solid electrolytes</subject><subject>solid‐state electrolytes</subject><subject>superionic conductors</subject><subject>Yttrium</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwyAUx4nRxGXu6pnEcydQytpjbaYz2dRk80xoSx0LLRNozG5-BD-jn0S2mXmUy4OX3_-98APgGqMxRojcCtm1Y4IIRnFG8BkYYIZpxFKKzk_3mFyCkXMbFA7NAhkPQJ_DpbRKOmgauJK2E3YHF9ILDYu1NlbVEi77bUBMpypYmK7uK2-sg42xcKbe1t-fXy_ShlcrukrCXOvQWRqt6n31wks4V36t-hbeCe8Py67ARSO0k6PfOgSv99NVMYvmzw-PRT6PKkpiHJUJamSJkzpNmKAlRXWTkRSXhx5BVUopzhhiWYqTrGHxBAspMKWlrBlJEhYPwc1x7taa9146zzemD3_UjhM2IYSwoCZQ4yNVWeOclQ3fWtUGERwjvrfL93b5yW4IZMfAh9Jy9w_N8-nT4i_7AwrhgNM</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Liang, Jianwen</creator><creator>Maas, Eveline</creator><creator>Luo, Jing</creator><creator>Li, Xiaona</creator><creator>Chen, Ning</creator><creator>Adair, Keegan R.</creator><creator>Li, Weihan</creator><creator>Li, Junjie</creator><creator>Hu, Yongfeng</creator><creator>Liu, Jue</creator><creator>Zhang, Li</creator><creator>Zhao, Shangqian</creator><creator>Lu, Shigang</creator><creator>Wang, Jiantao</creator><creator>Huang, Huan</creator><creator>Zhao, Wenxuan</creator><creator>Parnell, Steven</creator><creator>Smith, Ronald I.</creator><creator>Ganapathy, Swapna</creator><creator>Wagemaker, Marnix</creator><creator>Sun, Xueliang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0374-1245</orcidid><orcidid>https://orcid.org/0000-0001-6713-2997</orcidid><orcidid>https://orcid.org/0000-0003-4055-1301</orcidid></search><sort><creationdate>20220601</creationdate><title>A Series of Ternary Metal Chloride Superionic Conductors for High‐Performance All‐Solid‐State Lithium Batteries</title><author>Liang, Jianwen ; Maas, Eveline ; Luo, Jing ; Li, Xiaona ; Chen, Ning ; Adair, Keegan R. ; Li, Weihan ; Li, Junjie ; Hu, Yongfeng ; Liu, Jue ; Zhang, Li ; Zhao, Shangqian ; Lu, Shigang ; Wang, Jiantao ; Huang, Huan ; Zhao, Wenxuan ; Parnell, Steven ; Smith, Ronald I. ; Ganapathy, Swapna ; Wagemaker, Marnix ; Sun, Xueliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4231-b50feb15d856a4b40df9281beb15d20c8441960698159f6371aea144bed625563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>all‐solid‐state Li batteries</topic><topic>Conductors</topic><topic>Dynamic stability</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>energy storage</topic><topic>Erbium</topic><topic>halides</topic><topic>Ion currents</topic><topic>Ions</topic><topic>Lithium batteries</topic><topic>Metal chlorides</topic><topic>Molecular dynamics</topic><topic>Molten salt electrolytes</topic><topic>Orthorhombic phase</topic><topic>Phase transitions</topic><topic>Solid electrolytes</topic><topic>solid‐state electrolytes</topic><topic>superionic conductors</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Jianwen</creatorcontrib><creatorcontrib>Maas, Eveline</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><creatorcontrib>Li, Xiaona</creatorcontrib><creatorcontrib>Chen, Ning</creatorcontrib><creatorcontrib>Adair, Keegan R.</creatorcontrib><creatorcontrib>Li, Weihan</creatorcontrib><creatorcontrib>Li, Junjie</creatorcontrib><creatorcontrib>Hu, Yongfeng</creatorcontrib><creatorcontrib>Liu, Jue</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhao, Shangqian</creatorcontrib><creatorcontrib>Lu, Shigang</creatorcontrib><creatorcontrib>Wang, Jiantao</creatorcontrib><creatorcontrib>Huang, Huan</creatorcontrib><creatorcontrib>Zhao, Wenxuan</creatorcontrib><creatorcontrib>Parnell, Steven</creatorcontrib><creatorcontrib>Smith, Ronald I.</creatorcontrib><creatorcontrib>Ganapathy, Swapna</creatorcontrib><creatorcontrib>Wagemaker, Marnix</creatorcontrib><creatorcontrib>Sun, Xueliang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Jianwen</au><au>Maas, Eveline</au><au>Luo, Jing</au><au>Li, Xiaona</au><au>Chen, Ning</au><au>Adair, Keegan R.</au><au>Li, Weihan</au><au>Li, Junjie</au><au>Hu, Yongfeng</au><au>Liu, Jue</au><au>Zhang, Li</au><au>Zhao, Shangqian</au><au>Lu, Shigang</au><au>Wang, Jiantao</au><au>Huang, Huan</au><au>Zhao, Wenxuan</au><au>Parnell, Steven</au><au>Smith, Ronald I.</au><au>Ganapathy, Swapna</au><au>Wagemaker, Marnix</au><au>Sun, Xueliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Series of Ternary Metal Chloride Superionic Conductors for High‐Performance All‐Solid‐State Lithium Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>12</volume><issue>21</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Understanding the relationship between structure, ionic conductivity, and synthesis is the key to the development of superionic conductors. Here, a series of Li3‐3xM1+xCl6 (−0.14 &lt; x ≤ 0.5, M = Tb, Dy, Ho, Y, Er, Tm) solid electrolytes with orthorhombic and trigonal structures are reported. The orthorhombic phase of Li–M–Cl shows an approximately one order of magnitude increase in ionic conductivities when compared to their trigonal phase. Using the Li–Ho–Cl components as an example, their structures, phase transition, ionic conductivity, and electrochemical stability are studied. Molecular dynamics simulations reveal the facile diffusion in the z‐direction in the orthorhombic structure, rationalizing the improved ionic conductivities. All‐solid‐state batteries of NMC811/Li2.73Ho1.09Cl6/In demonstrate excellent electrochemical performance at both 25 and −10 °C. As relevant to the vast number of isostructural halide electrolytes, the present structure control strategy guides the design of halide superionic conductors. A favorable orthorhombic phase in various Li–M–Cl (M = Dy, Ho, Y, Er, Tm) systems which triggers a significant increase in Li+ diffusivity and reduces the activation energy barrier for diffusion is revealed. The findings are expected to aid the discovery of fundamental chemical theories relating to the activity of rare earth metal halides and exploration of new materials with high Li+ conductivity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202103921</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0374-1245</orcidid><orcidid>https://orcid.org/0000-0001-6713-2997</orcidid><orcidid>https://orcid.org/0000-0003-4055-1301</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2022-06, Vol.12 (21), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2672226161
source Wiley Online Library - AutoHoldings Journals
subjects all‐solid‐state Li batteries
Conductors
Dynamic stability
Electrochemical analysis
Electrolytes
energy storage
Erbium
halides
Ion currents
Ions
Lithium batteries
Metal chlorides
Molecular dynamics
Molten salt electrolytes
Orthorhombic phase
Phase transitions
Solid electrolytes
solid‐state electrolytes
superionic conductors
Yttrium
title A Series of Ternary Metal Chloride Superionic Conductors for High‐Performance All‐Solid‐State Lithium Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T22%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Series%20of%20Ternary%20Metal%20Chloride%20Superionic%20Conductors%20for%20High%E2%80%90Performance%20All%E2%80%90Solid%E2%80%90State%20Lithium%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Liang,%20Jianwen&rft.date=2022-06-01&rft.volume=12&rft.issue=21&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202103921&rft_dat=%3Cproquest_cross%3E2672226161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672226161&rft_id=info:pmid/&rfr_iscdi=true