High-Performance Electrochemical Degradation of Methylene Blue by a Ti4O7 Anode Prepared via Industrial Tailing Titanium Powder

A low-cost, safe, and environmentally friendly preparation method, TiO 2 reduced with self-made TiH 2 via industrial tailing titanium powder, is successfully carried out to fabricate Ti 4 O 7 powder, then a Ti 4 O 7 electrode is prepared by the current powder and used to degrade methylene blue (MB)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2022-07, Vol.51 (7), p.3560-3568
Hauptverfasser: Xiong, Feng, Ye, Jinwen, Liu, Ying, Yuan, Tingting, Wei, Weiran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3568
container_issue 7
container_start_page 3560
container_title Journal of electronic materials
container_volume 51
creator Xiong, Feng
Ye, Jinwen
Liu, Ying
Yuan, Tingting
Wei, Weiran
description A low-cost, safe, and environmentally friendly preparation method, TiO 2 reduced with self-made TiH 2 via industrial tailing titanium powder, is successfully carried out to fabricate Ti 4 O 7 powder, then a Ti 4 O 7 electrode is prepared by the current powder and used to degrade methylene blue (MB). The phase, morphology, and conductivity of the Ti 4 O 7 powder and electrode are studied, showing that our method can obtain a single-phase powder at a lower temperature, and the Ti 4 O 7 electrode conductivity (1048.6 S/cm) is 44.2% higher than the graphite electrode. The effects of current density, electrolyte concentration, and initial MB concentration on MB removal rate are studied. These results show that both low and high concentrations of MB could achieve rapid degradation in the electrochemical oxidation system using the Ti 4 O 7 electrode under low current density (10 mA/cm 2 ), and the removal rate is better than other electrode materials including Pt, Ti/SnO 2 and Pt/MnO 2 . In addition, the kinetic process of electrochemical oxidation and degradation of MB on Ti 4 O 7 electrode is investigated and conformed to the first-order kinetic model.
doi_str_mv 10.1007/s11664-022-09596-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672174118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672174118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-3cee98a90154166eb6d87b93bd3887baacefeef6155a324c7eeebea1f0bc34753</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwA0yWmA12nDjJWEqhlYraoUhsluO8tK5Su9gJqBO_jqFIbEx-w7n3-R2Erhm9ZZTmd4ExIVJCk4TQMisFESdowLKUE1aI11M0oFwwkiU8O0cXIWwpZRkr2AB9Ts16Q5bgG-d3ymrAkxZ0553ewM5o1eIHWHtVq844i12Dn6HbHFqwgO_bHnB1wAqvTLrI8ci6GvDSw155qPG7UXhm6z503sSalTKtsevIdsqafoeX7qMGf4nOGtUGuPp9h-jlcbIaT8l88TQbj-ZEJ2nZEa4BykKV8dtpvBQqURd5VfKq5kUclNLQADSCZZniSapzAKhAsYZWmqd5xofo5ti79-6th9DJreu9jStlIvKE5SljRaSSI6W9C8FDI_fe7JQ_SEblt2h5FC2jaPkjWooY4sdQiLBdg_-r_if1BRh5gqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672174118</pqid></control><display><type>article</type><title>High-Performance Electrochemical Degradation of Methylene Blue by a Ti4O7 Anode Prepared via Industrial Tailing Titanium Powder</title><source>SpringerNature Journals</source><creator>Xiong, Feng ; Ye, Jinwen ; Liu, Ying ; Yuan, Tingting ; Wei, Weiran</creator><creatorcontrib>Xiong, Feng ; Ye, Jinwen ; Liu, Ying ; Yuan, Tingting ; Wei, Weiran</creatorcontrib><description>A low-cost, safe, and environmentally friendly preparation method, TiO 2 reduced with self-made TiH 2 via industrial tailing titanium powder, is successfully carried out to fabricate Ti 4 O 7 powder, then a Ti 4 O 7 electrode is prepared by the current powder and used to degrade methylene blue (MB). The phase, morphology, and conductivity of the Ti 4 O 7 powder and electrode are studied, showing that our method can obtain a single-phase powder at a lower temperature, and the Ti 4 O 7 electrode conductivity (1048.6 S/cm) is 44.2% higher than the graphite electrode. The effects of current density, electrolyte concentration, and initial MB concentration on MB removal rate are studied. These results show that both low and high concentrations of MB could achieve rapid degradation in the electrochemical oxidation system using the Ti 4 O 7 electrode under low current density (10 mA/cm 2 ), and the removal rate is better than other electrode materials including Pt, Ti/SnO 2 and Pt/MnO 2 . In addition, the kinetic process of electrochemical oxidation and degradation of MB on Ti 4 O 7 electrode is investigated and conformed to the first-order kinetic model.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-022-09596-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Current density ; Electrochemical oxidation ; Electrode materials ; Electrodes ; Electronics and Microelectronics ; Instrumentation ; Low currents ; Manganese dioxide ; Materials Science ; Methylene blue ; Optical and Electronic Materials ; Original Research Article ; Oxidation ; Performance degradation ; Solid State Physics ; Tailings ; Tin dioxide ; Titanium ; Titanium dioxide</subject><ispartof>Journal of electronic materials, 2022-07, Vol.51 (7), p.3560-3568</ispartof><rights>The Minerals, Metals &amp; Materials Society 2022</rights><rights>The Minerals, Metals &amp; Materials Society 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-3cee98a90154166eb6d87b93bd3887baacefeef6155a324c7eeebea1f0bc34753</citedby><cites>FETCH-LOGICAL-c249t-3cee98a90154166eb6d87b93bd3887baacefeef6155a324c7eeebea1f0bc34753</cites><orcidid>0000-0002-0409-250X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-022-09596-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-022-09596-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xiong, Feng</creatorcontrib><creatorcontrib>Ye, Jinwen</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Yuan, Tingting</creatorcontrib><creatorcontrib>Wei, Weiran</creatorcontrib><title>High-Performance Electrochemical Degradation of Methylene Blue by a Ti4O7 Anode Prepared via Industrial Tailing Titanium Powder</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>A low-cost, safe, and environmentally friendly preparation method, TiO 2 reduced with self-made TiH 2 via industrial tailing titanium powder, is successfully carried out to fabricate Ti 4 O 7 powder, then a Ti 4 O 7 electrode is prepared by the current powder and used to degrade methylene blue (MB). The phase, morphology, and conductivity of the Ti 4 O 7 powder and electrode are studied, showing that our method can obtain a single-phase powder at a lower temperature, and the Ti 4 O 7 electrode conductivity (1048.6 S/cm) is 44.2% higher than the graphite electrode. The effects of current density, electrolyte concentration, and initial MB concentration on MB removal rate are studied. These results show that both low and high concentrations of MB could achieve rapid degradation in the electrochemical oxidation system using the Ti 4 O 7 electrode under low current density (10 mA/cm 2 ), and the removal rate is better than other electrode materials including Pt, Ti/SnO 2 and Pt/MnO 2 . In addition, the kinetic process of electrochemical oxidation and degradation of MB on Ti 4 O 7 electrode is investigated and conformed to the first-order kinetic model.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Current density</subject><subject>Electrochemical oxidation</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Low currents</subject><subject>Manganese dioxide</subject><subject>Materials Science</subject><subject>Methylene blue</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Oxidation</subject><subject>Performance degradation</subject><subject>Solid State Physics</subject><subject>Tailings</subject><subject>Tin dioxide</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLFOwzAURS0EEqXwA0yWmA12nDjJWEqhlYraoUhsluO8tK5Su9gJqBO_jqFIbEx-w7n3-R2Erhm9ZZTmd4ExIVJCk4TQMisFESdowLKUE1aI11M0oFwwkiU8O0cXIWwpZRkr2AB9Ts16Q5bgG-d3ymrAkxZ0553ewM5o1eIHWHtVq844i12Dn6HbHFqwgO_bHnB1wAqvTLrI8ci6GvDSw155qPG7UXhm6z503sSalTKtsevIdsqafoeX7qMGf4nOGtUGuPp9h-jlcbIaT8l88TQbj-ZEJ2nZEa4BykKV8dtpvBQqURd5VfKq5kUclNLQADSCZZniSapzAKhAsYZWmqd5xofo5ti79-6th9DJreu9jStlIvKE5SljRaSSI6W9C8FDI_fe7JQ_SEblt2h5FC2jaPkjWooY4sdQiLBdg_-r_if1BRh5gqE</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Xiong, Feng</creator><creator>Ye, Jinwen</creator><creator>Liu, Ying</creator><creator>Yuan, Tingting</creator><creator>Wei, Weiran</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-0409-250X</orcidid></search><sort><creationdate>20220701</creationdate><title>High-Performance Electrochemical Degradation of Methylene Blue by a Ti4O7 Anode Prepared via Industrial Tailing Titanium Powder</title><author>Xiong, Feng ; Ye, Jinwen ; Liu, Ying ; Yuan, Tingting ; Wei, Weiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-3cee98a90154166eb6d87b93bd3887baacefeef6155a324c7eeebea1f0bc34753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Current density</topic><topic>Electrochemical oxidation</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Low currents</topic><topic>Manganese dioxide</topic><topic>Materials Science</topic><topic>Methylene blue</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Oxidation</topic><topic>Performance degradation</topic><topic>Solid State Physics</topic><topic>Tailings</topic><topic>Tin dioxide</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Feng</creatorcontrib><creatorcontrib>Ye, Jinwen</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Yuan, Tingting</creatorcontrib><creatorcontrib>Wei, Weiran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Feng</au><au>Ye, Jinwen</au><au>Liu, Ying</au><au>Yuan, Tingting</au><au>Wei, Weiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Electrochemical Degradation of Methylene Blue by a Ti4O7 Anode Prepared via Industrial Tailing Titanium Powder</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>51</volume><issue>7</issue><spage>3560</spage><epage>3568</epage><pages>3560-3568</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>A low-cost, safe, and environmentally friendly preparation method, TiO 2 reduced with self-made TiH 2 via industrial tailing titanium powder, is successfully carried out to fabricate Ti 4 O 7 powder, then a Ti 4 O 7 electrode is prepared by the current powder and used to degrade methylene blue (MB). The phase, morphology, and conductivity of the Ti 4 O 7 powder and electrode are studied, showing that our method can obtain a single-phase powder at a lower temperature, and the Ti 4 O 7 electrode conductivity (1048.6 S/cm) is 44.2% higher than the graphite electrode. The effects of current density, electrolyte concentration, and initial MB concentration on MB removal rate are studied. These results show that both low and high concentrations of MB could achieve rapid degradation in the electrochemical oxidation system using the Ti 4 O 7 electrode under low current density (10 mA/cm 2 ), and the removal rate is better than other electrode materials including Pt, Ti/SnO 2 and Pt/MnO 2 . In addition, the kinetic process of electrochemical oxidation and degradation of MB on Ti 4 O 7 electrode is investigated and conformed to the first-order kinetic model.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-022-09596-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0409-250X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2022-07, Vol.51 (7), p.3560-3568
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2672174118
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Current density
Electrochemical oxidation
Electrode materials
Electrodes
Electronics and Microelectronics
Instrumentation
Low currents
Manganese dioxide
Materials Science
Methylene blue
Optical and Electronic Materials
Original Research Article
Oxidation
Performance degradation
Solid State Physics
Tailings
Tin dioxide
Titanium
Titanium dioxide
title High-Performance Electrochemical Degradation of Methylene Blue by a Ti4O7 Anode Prepared via Industrial Tailing Titanium Powder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Electrochemical%20Degradation%20of%20Methylene%20Blue%20by%20a%20Ti4O7%20Anode%20Prepared%20via%20Industrial%20Tailing%20Titanium%20Powder&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Xiong,%20Feng&rft.date=2022-07-01&rft.volume=51&rft.issue=7&rft.spage=3560&rft.epage=3568&rft.pages=3560-3568&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-022-09596-6&rft_dat=%3Cproquest_cross%3E2672174118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672174118&rft_id=info:pmid/&rfr_iscdi=true