High-Performance Electrochemical Degradation of Methylene Blue by a Ti4O7 Anode Prepared via Industrial Tailing Titanium Powder
A low-cost, safe, and environmentally friendly preparation method, TiO 2 reduced with self-made TiH 2 via industrial tailing titanium powder, is successfully carried out to fabricate Ti 4 O 7 powder, then a Ti 4 O 7 electrode is prepared by the current powder and used to degrade methylene blue (MB)....
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2022-07, Vol.51 (7), p.3560-3568 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3568 |
---|---|
container_issue | 7 |
container_start_page | 3560 |
container_title | Journal of electronic materials |
container_volume | 51 |
creator | Xiong, Feng Ye, Jinwen Liu, Ying Yuan, Tingting Wei, Weiran |
description | A low-cost, safe, and environmentally friendly preparation method, TiO
2
reduced with self-made TiH
2
via industrial tailing titanium powder, is successfully carried out to fabricate Ti
4
O
7
powder, then a Ti
4
O
7
electrode is prepared by the current powder and used to degrade methylene blue (MB). The phase, morphology, and conductivity of the Ti
4
O
7
powder and electrode are studied, showing that our method can obtain a single-phase powder at a lower temperature, and the Ti
4
O
7
electrode conductivity (1048.6 S/cm) is 44.2% higher than the graphite electrode. The effects of current density, electrolyte concentration, and initial MB concentration on MB removal rate are studied. These results show that both low and high concentrations of MB could achieve rapid degradation in the electrochemical oxidation system using the Ti
4
O
7
electrode under low current density (10 mA/cm
2
), and the removal rate is better than other electrode materials including Pt, Ti/SnO
2
and Pt/MnO
2
. In addition, the kinetic process of electrochemical oxidation and degradation of MB on Ti
4
O
7
electrode is investigated and conformed to the first-order kinetic model. |
doi_str_mv | 10.1007/s11664-022-09596-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2672174118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672174118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-3cee98a90154166eb6d87b93bd3887baacefeef6155a324c7eeebea1f0bc34753</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwA0yWmA12nDjJWEqhlYraoUhsluO8tK5Su9gJqBO_jqFIbEx-w7n3-R2Erhm9ZZTmd4ExIVJCk4TQMisFESdowLKUE1aI11M0oFwwkiU8O0cXIWwpZRkr2AB9Ts16Q5bgG-d3ymrAkxZ0553ewM5o1eIHWHtVq844i12Dn6HbHFqwgO_bHnB1wAqvTLrI8ci6GvDSw155qPG7UXhm6z503sSalTKtsevIdsqafoeX7qMGf4nOGtUGuPp9h-jlcbIaT8l88TQbj-ZEJ2nZEa4BykKV8dtpvBQqURd5VfKq5kUclNLQADSCZZniSapzAKhAsYZWmqd5xofo5ti79-6th9DJreu9jStlIvKE5SljRaSSI6W9C8FDI_fe7JQ_SEblt2h5FC2jaPkjWooY4sdQiLBdg_-r_if1BRh5gqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672174118</pqid></control><display><type>article</type><title>High-Performance Electrochemical Degradation of Methylene Blue by a Ti4O7 Anode Prepared via Industrial Tailing Titanium Powder</title><source>SpringerNature Journals</source><creator>Xiong, Feng ; Ye, Jinwen ; Liu, Ying ; Yuan, Tingting ; Wei, Weiran</creator><creatorcontrib>Xiong, Feng ; Ye, Jinwen ; Liu, Ying ; Yuan, Tingting ; Wei, Weiran</creatorcontrib><description>A low-cost, safe, and environmentally friendly preparation method, TiO
2
reduced with self-made TiH
2
via industrial tailing titanium powder, is successfully carried out to fabricate Ti
4
O
7
powder, then a Ti
4
O
7
electrode is prepared by the current powder and used to degrade methylene blue (MB). The phase, morphology, and conductivity of the Ti
4
O
7
powder and electrode are studied, showing that our method can obtain a single-phase powder at a lower temperature, and the Ti
4
O
7
electrode conductivity (1048.6 S/cm) is 44.2% higher than the graphite electrode. The effects of current density, electrolyte concentration, and initial MB concentration on MB removal rate are studied. These results show that both low and high concentrations of MB could achieve rapid degradation in the electrochemical oxidation system using the Ti
4
O
7
electrode under low current density (10 mA/cm
2
), and the removal rate is better than other electrode materials including Pt, Ti/SnO
2
and Pt/MnO
2
. In addition, the kinetic process of electrochemical oxidation and degradation of MB on Ti
4
O
7
electrode is investigated and conformed to the first-order kinetic model.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-022-09596-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Current density ; Electrochemical oxidation ; Electrode materials ; Electrodes ; Electronics and Microelectronics ; Instrumentation ; Low currents ; Manganese dioxide ; Materials Science ; Methylene blue ; Optical and Electronic Materials ; Original Research Article ; Oxidation ; Performance degradation ; Solid State Physics ; Tailings ; Tin dioxide ; Titanium ; Titanium dioxide</subject><ispartof>Journal of electronic materials, 2022-07, Vol.51 (7), p.3560-3568</ispartof><rights>The Minerals, Metals & Materials Society 2022</rights><rights>The Minerals, Metals & Materials Society 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-3cee98a90154166eb6d87b93bd3887baacefeef6155a324c7eeebea1f0bc34753</citedby><cites>FETCH-LOGICAL-c249t-3cee98a90154166eb6d87b93bd3887baacefeef6155a324c7eeebea1f0bc34753</cites><orcidid>0000-0002-0409-250X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-022-09596-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-022-09596-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xiong, Feng</creatorcontrib><creatorcontrib>Ye, Jinwen</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Yuan, Tingting</creatorcontrib><creatorcontrib>Wei, Weiran</creatorcontrib><title>High-Performance Electrochemical Degradation of Methylene Blue by a Ti4O7 Anode Prepared via Industrial Tailing Titanium Powder</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>A low-cost, safe, and environmentally friendly preparation method, TiO
2
reduced with self-made TiH
2
via industrial tailing titanium powder, is successfully carried out to fabricate Ti
4
O
7
powder, then a Ti
4
O
7
electrode is prepared by the current powder and used to degrade methylene blue (MB). The phase, morphology, and conductivity of the Ti
4
O
7
powder and electrode are studied, showing that our method can obtain a single-phase powder at a lower temperature, and the Ti
4
O
7
electrode conductivity (1048.6 S/cm) is 44.2% higher than the graphite electrode. The effects of current density, electrolyte concentration, and initial MB concentration on MB removal rate are studied. These results show that both low and high concentrations of MB could achieve rapid degradation in the electrochemical oxidation system using the Ti
4
O
7
electrode under low current density (10 mA/cm
2
), and the removal rate is better than other electrode materials including Pt, Ti/SnO
2
and Pt/MnO
2
. In addition, the kinetic process of electrochemical oxidation and degradation of MB on Ti
4
O
7
electrode is investigated and conformed to the first-order kinetic model.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Current density</subject><subject>Electrochemical oxidation</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Low currents</subject><subject>Manganese dioxide</subject><subject>Materials Science</subject><subject>Methylene blue</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Oxidation</subject><subject>Performance degradation</subject><subject>Solid State Physics</subject><subject>Tailings</subject><subject>Tin dioxide</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLFOwzAURS0EEqXwA0yWmA12nDjJWEqhlYraoUhsluO8tK5Su9gJqBO_jqFIbEx-w7n3-R2Erhm9ZZTmd4ExIVJCk4TQMisFESdowLKUE1aI11M0oFwwkiU8O0cXIWwpZRkr2AB9Ts16Q5bgG-d3ymrAkxZ0553ewM5o1eIHWHtVq844i12Dn6HbHFqwgO_bHnB1wAqvTLrI8ci6GvDSw155qPG7UXhm6z503sSalTKtsevIdsqafoeX7qMGf4nOGtUGuPp9h-jlcbIaT8l88TQbj-ZEJ2nZEa4BykKV8dtpvBQqURd5VfKq5kUclNLQADSCZZniSapzAKhAsYZWmqd5xofo5ti79-6th9DJreu9jStlIvKE5SljRaSSI6W9C8FDI_fe7JQ_SEblt2h5FC2jaPkjWooY4sdQiLBdg_-r_if1BRh5gqE</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Xiong, Feng</creator><creator>Ye, Jinwen</creator><creator>Liu, Ying</creator><creator>Yuan, Tingting</creator><creator>Wei, Weiran</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-0409-250X</orcidid></search><sort><creationdate>20220701</creationdate><title>High-Performance Electrochemical Degradation of Methylene Blue by a Ti4O7 Anode Prepared via Industrial Tailing Titanium Powder</title><author>Xiong, Feng ; Ye, Jinwen ; Liu, Ying ; Yuan, Tingting ; Wei, Weiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-3cee98a90154166eb6d87b93bd3887baacefeef6155a324c7eeebea1f0bc34753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Current density</topic><topic>Electrochemical oxidation</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Low currents</topic><topic>Manganese dioxide</topic><topic>Materials Science</topic><topic>Methylene blue</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Oxidation</topic><topic>Performance degradation</topic><topic>Solid State Physics</topic><topic>Tailings</topic><topic>Tin dioxide</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Feng</creatorcontrib><creatorcontrib>Ye, Jinwen</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Yuan, Tingting</creatorcontrib><creatorcontrib>Wei, Weiran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Feng</au><au>Ye, Jinwen</au><au>Liu, Ying</au><au>Yuan, Tingting</au><au>Wei, Weiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Electrochemical Degradation of Methylene Blue by a Ti4O7 Anode Prepared via Industrial Tailing Titanium Powder</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>51</volume><issue>7</issue><spage>3560</spage><epage>3568</epage><pages>3560-3568</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>A low-cost, safe, and environmentally friendly preparation method, TiO
2
reduced with self-made TiH
2
via industrial tailing titanium powder, is successfully carried out to fabricate Ti
4
O
7
powder, then a Ti
4
O
7
electrode is prepared by the current powder and used to degrade methylene blue (MB). The phase, morphology, and conductivity of the Ti
4
O
7
powder and electrode are studied, showing that our method can obtain a single-phase powder at a lower temperature, and the Ti
4
O
7
electrode conductivity (1048.6 S/cm) is 44.2% higher than the graphite electrode. The effects of current density, electrolyte concentration, and initial MB concentration on MB removal rate are studied. These results show that both low and high concentrations of MB could achieve rapid degradation in the electrochemical oxidation system using the Ti
4
O
7
electrode under low current density (10 mA/cm
2
), and the removal rate is better than other electrode materials including Pt, Ti/SnO
2
and Pt/MnO
2
. In addition, the kinetic process of electrochemical oxidation and degradation of MB on Ti
4
O
7
electrode is investigated and conformed to the first-order kinetic model.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-022-09596-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0409-250X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2022-07, Vol.51 (7), p.3560-3568 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2672174118 |
source | SpringerNature Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Current density Electrochemical oxidation Electrode materials Electrodes Electronics and Microelectronics Instrumentation Low currents Manganese dioxide Materials Science Methylene blue Optical and Electronic Materials Original Research Article Oxidation Performance degradation Solid State Physics Tailings Tin dioxide Titanium Titanium dioxide |
title | High-Performance Electrochemical Degradation of Methylene Blue by a Ti4O7 Anode Prepared via Industrial Tailing Titanium Powder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Electrochemical%20Degradation%20of%20Methylene%20Blue%20by%20a%20Ti4O7%20Anode%20Prepared%20via%20Industrial%20Tailing%20Titanium%20Powder&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Xiong,%20Feng&rft.date=2022-07-01&rft.volume=51&rft.issue=7&rft.spage=3560&rft.epage=3568&rft.pages=3560-3568&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-022-09596-6&rft_dat=%3Cproquest_cross%3E2672174118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672174118&rft_id=info:pmid/&rfr_iscdi=true |