EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware Motion Model
Although significant progress has been made to audio-driven talking face generation, existing methods either neglect facial emotion or cannot be applied to arbitrary subjects. In this paper, we propose the Emotion-Aware Motion Model (EAMM) to generate one-shot emotional talking faces by involving an...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-09 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ji, Xinya Zhou, Hang Wang, Kaisiyuan Wu, Qianyi Wu, Wayne Xu, Feng Cao, Xun |
description | Although significant progress has been made to audio-driven talking face generation, existing methods either neglect facial emotion or cannot be applied to arbitrary subjects. In this paper, we propose the Emotion-Aware Motion Model (EAMM) to generate one-shot emotional talking faces by involving an emotion source video. Specifically, we first propose an Audio2Facial-Dynamics module, which renders talking faces from audio-driven unsupervised zero- and first-order key-points motion. Then through exploring the motion model's properties, we further propose an Implicit Emotion Displacement Learner to represent emotion-related facial dynamics as linearly additive displacements to the previously acquired motion representations. Comprehensive experiments demonstrate that by incorporating the results from both modules, our method can generate satisfactory talking face results on arbitrary subjects with realistic emotion patterns. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2672170081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672170081</sourcerecordid><originalsourceid>FETCH-proquest_journals_26721700813</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQIcHX09bVS8M9L1Q3OyC9RcM3NL8nMz0vMUQhJzMnOzEtXcEtMTlUoy0xUcCxNyczXdUosTk2BKdN1LE8sSlXwBXOAVEpqDg8Da1piTnEqL5TmZlB2cw1x9tAtKMovLE0tLonPyi8tAlpQHA9yhKG5gYGFoTFxqgBIiTz-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672170081</pqid></control><display><type>article</type><title>EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware Motion Model</title><source>Free E- Journals</source><creator>Ji, Xinya ; Zhou, Hang ; Wang, Kaisiyuan ; Wu, Qianyi ; Wu, Wayne ; Xu, Feng ; Cao, Xun</creator><creatorcontrib>Ji, Xinya ; Zhou, Hang ; Wang, Kaisiyuan ; Wu, Qianyi ; Wu, Wayne ; Xu, Feng ; Cao, Xun</creatorcontrib><description>Although significant progress has been made to audio-driven talking face generation, existing methods either neglect facial emotion or cannot be applied to arbitrary subjects. In this paper, we propose the Emotion-Aware Motion Model (EAMM) to generate one-shot emotional talking faces by involving an emotion source video. Specifically, we first propose an Audio2Facial-Dynamics module, which renders talking faces from audio-driven unsupervised zero- and first-order key-points motion. Then through exploring the motion model's properties, we further propose an Implicit Emotion Displacement Learner to represent emotion-related facial dynamics as linearly additive displacements to the previously acquired motion representations. Comprehensive experiments demonstrate that by incorporating the results from both modules, our method can generate satisfactory talking face results on arbitrary subjects with realistic emotion patterns.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Emotions ; Modules ; Talking</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ji, Xinya</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><creatorcontrib>Wang, Kaisiyuan</creatorcontrib><creatorcontrib>Wu, Qianyi</creatorcontrib><creatorcontrib>Wu, Wayne</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Cao, Xun</creatorcontrib><title>EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware Motion Model</title><title>arXiv.org</title><description>Although significant progress has been made to audio-driven talking face generation, existing methods either neglect facial emotion or cannot be applied to arbitrary subjects. In this paper, we propose the Emotion-Aware Motion Model (EAMM) to generate one-shot emotional talking faces by involving an emotion source video. Specifically, we first propose an Audio2Facial-Dynamics module, which renders talking faces from audio-driven unsupervised zero- and first-order key-points motion. Then through exploring the motion model's properties, we further propose an Implicit Emotion Displacement Learner to represent emotion-related facial dynamics as linearly additive displacements to the previously acquired motion representations. Comprehensive experiments demonstrate that by incorporating the results from both modules, our method can generate satisfactory talking face results on arbitrary subjects with realistic emotion patterns.</description><subject>Emotions</subject><subject>Modules</subject><subject>Talking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQIcHX09bVS8M9L1Q3OyC9RcM3NL8nMz0vMUQhJzMnOzEtXcEtMTlUoy0xUcCxNyczXdUosTk2BKdN1LE8sSlXwBXOAVEpqDg8Da1piTnEqL5TmZlB2cw1x9tAtKMovLE0tLonPyi8tAlpQHA9yhKG5gYGFoTFxqgBIiTz-</recordid><startdate>20220923</startdate><enddate>20220923</enddate><creator>Ji, Xinya</creator><creator>Zhou, Hang</creator><creator>Wang, Kaisiyuan</creator><creator>Wu, Qianyi</creator><creator>Wu, Wayne</creator><creator>Xu, Feng</creator><creator>Cao, Xun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220923</creationdate><title>EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware Motion Model</title><author>Ji, Xinya ; Zhou, Hang ; Wang, Kaisiyuan ; Wu, Qianyi ; Wu, Wayne ; Xu, Feng ; Cao, Xun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26721700813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Emotions</topic><topic>Modules</topic><topic>Talking</topic><toplevel>online_resources</toplevel><creatorcontrib>Ji, Xinya</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><creatorcontrib>Wang, Kaisiyuan</creatorcontrib><creatorcontrib>Wu, Qianyi</creatorcontrib><creatorcontrib>Wu, Wayne</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Cao, Xun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Xinya</au><au>Zhou, Hang</au><au>Wang, Kaisiyuan</au><au>Wu, Qianyi</au><au>Wu, Wayne</au><au>Xu, Feng</au><au>Cao, Xun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware Motion Model</atitle><jtitle>arXiv.org</jtitle><date>2022-09-23</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Although significant progress has been made to audio-driven talking face generation, existing methods either neglect facial emotion or cannot be applied to arbitrary subjects. In this paper, we propose the Emotion-Aware Motion Model (EAMM) to generate one-shot emotional talking faces by involving an emotion source video. Specifically, we first propose an Audio2Facial-Dynamics module, which renders talking faces from audio-driven unsupervised zero- and first-order key-points motion. Then through exploring the motion model's properties, we further propose an Implicit Emotion Displacement Learner to represent emotion-related facial dynamics as linearly additive displacements to the previously acquired motion representations. Comprehensive experiments demonstrate that by incorporating the results from both modules, our method can generate satisfactory talking face results on arbitrary subjects with realistic emotion patterns.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2672170081 |
source | Free E- Journals |
subjects | Emotions Modules Talking |
title | EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware Motion Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=EAMM:%20One-Shot%20Emotional%20Talking%20Face%20via%20Audio-Based%20Emotion-Aware%20Motion%20Model&rft.jtitle=arXiv.org&rft.au=Ji,%20Xinya&rft.date=2022-09-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2672170081%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672170081&rft_id=info:pmid/&rfr_iscdi=true |