EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware Motion Model

Although significant progress has been made to audio-driven talking face generation, existing methods either neglect facial emotion or cannot be applied to arbitrary subjects. In this paper, we propose the Emotion-Aware Motion Model (EAMM) to generate one-shot emotional talking faces by involving an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-09
Hauptverfasser: Ji, Xinya, Zhou, Hang, Wang, Kaisiyuan, Wu, Qianyi, Wu, Wayne, Xu, Feng, Cao, Xun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ji, Xinya
Zhou, Hang
Wang, Kaisiyuan
Wu, Qianyi
Wu, Wayne
Xu, Feng
Cao, Xun
description Although significant progress has been made to audio-driven talking face generation, existing methods either neglect facial emotion or cannot be applied to arbitrary subjects. In this paper, we propose the Emotion-Aware Motion Model (EAMM) to generate one-shot emotional talking faces by involving an emotion source video. Specifically, we first propose an Audio2Facial-Dynamics module, which renders talking faces from audio-driven unsupervised zero- and first-order key-points motion. Then through exploring the motion model's properties, we further propose an Implicit Emotion Displacement Learner to represent emotion-related facial dynamics as linearly additive displacements to the previously acquired motion representations. Comprehensive experiments demonstrate that by incorporating the results from both modules, our method can generate satisfactory talking face results on arbitrary subjects with realistic emotion patterns.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2672170081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672170081</sourcerecordid><originalsourceid>FETCH-proquest_journals_26721700813</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQIcHX09bVS8M9L1Q3OyC9RcM3NL8nMz0vMUQhJzMnOzEtXcEtMTlUoy0xUcCxNyczXdUosTk2BKdN1LE8sSlXwBXOAVEpqDg8Da1piTnEqL5TmZlB2cw1x9tAtKMovLE0tLonPyi8tAlpQHA9yhKG5gYGFoTFxqgBIiTz-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672170081</pqid></control><display><type>article</type><title>EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware Motion Model</title><source>Free E- Journals</source><creator>Ji, Xinya ; Zhou, Hang ; Wang, Kaisiyuan ; Wu, Qianyi ; Wu, Wayne ; Xu, Feng ; Cao, Xun</creator><creatorcontrib>Ji, Xinya ; Zhou, Hang ; Wang, Kaisiyuan ; Wu, Qianyi ; Wu, Wayne ; Xu, Feng ; Cao, Xun</creatorcontrib><description>Although significant progress has been made to audio-driven talking face generation, existing methods either neglect facial emotion or cannot be applied to arbitrary subjects. In this paper, we propose the Emotion-Aware Motion Model (EAMM) to generate one-shot emotional talking faces by involving an emotion source video. Specifically, we first propose an Audio2Facial-Dynamics module, which renders talking faces from audio-driven unsupervised zero- and first-order key-points motion. Then through exploring the motion model's properties, we further propose an Implicit Emotion Displacement Learner to represent emotion-related facial dynamics as linearly additive displacements to the previously acquired motion representations. Comprehensive experiments demonstrate that by incorporating the results from both modules, our method can generate satisfactory talking face results on arbitrary subjects with realistic emotion patterns.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Emotions ; Modules ; Talking</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ji, Xinya</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><creatorcontrib>Wang, Kaisiyuan</creatorcontrib><creatorcontrib>Wu, Qianyi</creatorcontrib><creatorcontrib>Wu, Wayne</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Cao, Xun</creatorcontrib><title>EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware Motion Model</title><title>arXiv.org</title><description>Although significant progress has been made to audio-driven talking face generation, existing methods either neglect facial emotion or cannot be applied to arbitrary subjects. In this paper, we propose the Emotion-Aware Motion Model (EAMM) to generate one-shot emotional talking faces by involving an emotion source video. Specifically, we first propose an Audio2Facial-Dynamics module, which renders talking faces from audio-driven unsupervised zero- and first-order key-points motion. Then through exploring the motion model's properties, we further propose an Implicit Emotion Displacement Learner to represent emotion-related facial dynamics as linearly additive displacements to the previously acquired motion representations. Comprehensive experiments demonstrate that by incorporating the results from both modules, our method can generate satisfactory talking face results on arbitrary subjects with realistic emotion patterns.</description><subject>Emotions</subject><subject>Modules</subject><subject>Talking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQIcHX09bVS8M9L1Q3OyC9RcM3NL8nMz0vMUQhJzMnOzEtXcEtMTlUoy0xUcCxNyczXdUosTk2BKdN1LE8sSlXwBXOAVEpqDg8Da1piTnEqL5TmZlB2cw1x9tAtKMovLE0tLonPyi8tAlpQHA9yhKG5gYGFoTFxqgBIiTz-</recordid><startdate>20220923</startdate><enddate>20220923</enddate><creator>Ji, Xinya</creator><creator>Zhou, Hang</creator><creator>Wang, Kaisiyuan</creator><creator>Wu, Qianyi</creator><creator>Wu, Wayne</creator><creator>Xu, Feng</creator><creator>Cao, Xun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220923</creationdate><title>EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware Motion Model</title><author>Ji, Xinya ; Zhou, Hang ; Wang, Kaisiyuan ; Wu, Qianyi ; Wu, Wayne ; Xu, Feng ; Cao, Xun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26721700813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Emotions</topic><topic>Modules</topic><topic>Talking</topic><toplevel>online_resources</toplevel><creatorcontrib>Ji, Xinya</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><creatorcontrib>Wang, Kaisiyuan</creatorcontrib><creatorcontrib>Wu, Qianyi</creatorcontrib><creatorcontrib>Wu, Wayne</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Cao, Xun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Xinya</au><au>Zhou, Hang</au><au>Wang, Kaisiyuan</au><au>Wu, Qianyi</au><au>Wu, Wayne</au><au>Xu, Feng</au><au>Cao, Xun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware Motion Model</atitle><jtitle>arXiv.org</jtitle><date>2022-09-23</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Although significant progress has been made to audio-driven talking face generation, existing methods either neglect facial emotion or cannot be applied to arbitrary subjects. In this paper, we propose the Emotion-Aware Motion Model (EAMM) to generate one-shot emotional talking faces by involving an emotion source video. Specifically, we first propose an Audio2Facial-Dynamics module, which renders talking faces from audio-driven unsupervised zero- and first-order key-points motion. Then through exploring the motion model's properties, we further propose an Implicit Emotion Displacement Learner to represent emotion-related facial dynamics as linearly additive displacements to the previously acquired motion representations. Comprehensive experiments demonstrate that by incorporating the results from both modules, our method can generate satisfactory talking face results on arbitrary subjects with realistic emotion patterns.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2672170081
source Free E- Journals
subjects Emotions
Modules
Talking
title EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware Motion Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=EAMM:%20One-Shot%20Emotional%20Talking%20Face%20via%20Audio-Based%20Emotion-Aware%20Motion%20Model&rft.jtitle=arXiv.org&rft.au=Ji,%20Xinya&rft.date=2022-09-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2672170081%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672170081&rft_id=info:pmid/&rfr_iscdi=true