Deep Multi-Task Multi-Label CNN for Effective Facial Attribute Classification

Facial Attribute Classification (FAC) has attracted increasing attention in computer vision and pattern recognition. However, state-of-the-art FAC methods perform face detection/alignment and FAC independently. The inherent dependencies between these tasks are not fully exploited. In addition, most...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2022-04, Vol.13 (2), p.818-828
Hauptverfasser: Mao, Longbiao, Yan, Yan, Xue, Jing-Hao, Wang, Hanzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 828
container_issue 2
container_start_page 818
container_title IEEE transactions on affective computing
container_volume 13
creator Mao, Longbiao
Yan, Yan
Xue, Jing-Hao
Wang, Hanzi
description Facial Attribute Classification (FAC) has attracted increasing attention in computer vision and pattern recognition. However, state-of-the-art FAC methods perform face detection/alignment and FAC independently. The inherent dependencies between these tasks are not fully exploited. In addition, most methods predict all facial attributes using the same CNN network architecture, which ignores the different learning complexities of facial attributes. To address the above problems, we propose a novel deep multi-task multi-label CNN, termed DMM-CNN, for effective FAC. Specifically, DMM-CNN jointly optimizes two closely-related tasks (i.e., facial landmark detection and FAC) to improve the performance of FAC by taking advantage of multi-task learning. To deal with the diverse learning complexities of facial attributes, we divide the attributes into two groups: objective attributes and subjective attributes. Two different network architectures are respectively designed to extract features for two groups of attributes, and a novel dynamic weighting scheme is proposed to automatically assign the loss weight to each facial attribute during training. Furthermore, an adaptive thresholding strategy is developed to effectively alleviate the problem of class imbalance for multi-label learning. Experimental results on the challenging CelebA and LFWA datasets show the superiority of the proposed DMM-CNN method compared with several state-of-the-art FAC methods.
doi_str_mv 10.1109/TAFFC.2020.2969189
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2672103011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8967026</ieee_id><sourcerecordid>2672103011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-1d80c6e6027ac46d55dd1f0e2a00f5cddbeb84297dac754a22274c55d30f50b53</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOOb-gL4UfO68Sdq0eRx1VWGbL_M5pOkNZNZ1Jqngv7dzQ7wv98A95x74CLmlMKcU5MN2UdfVnAGDOZNC0lJekAmVmUw5ZPnlP31NZiHsYBzOuWDFhKwfEQ_JeuiiS7c6vJ_lSjfYJdVmk9jeJ0tr0UT3hUmtjdNdsojRu2aImFSdDsFZZ3R0_f6GXFndBZyd95S81ctt9ZyuXp9eqsUqNUzmMaVtCUagAFZok4k2z9uWWkCmAWxu2rbBpsyYLFptijzTjLEiM6OLj2docj4l96e_B99_Dhii2vWD34-ViomCUeBA6ehiJ5fxfQgerTp496H9t6KgjuTULzl1JKfO5MbQ3SnkEPEvUEpRABP8B0mTaJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672103011</pqid></control><display><type>article</type><title>Deep Multi-Task Multi-Label CNN for Effective Facial Attribute Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Mao, Longbiao ; Yan, Yan ; Xue, Jing-Hao ; Wang, Hanzi</creator><creatorcontrib>Mao, Longbiao ; Yan, Yan ; Xue, Jing-Hao ; Wang, Hanzi</creatorcontrib><description>Facial Attribute Classification (FAC) has attracted increasing attention in computer vision and pattern recognition. However, state-of-the-art FAC methods perform face detection/alignment and FAC independently. The inherent dependencies between these tasks are not fully exploited. In addition, most methods predict all facial attributes using the same CNN network architecture, which ignores the different learning complexities of facial attributes. To address the above problems, we propose a novel deep multi-task multi-label CNN, termed DMM-CNN, for effective FAC. Specifically, DMM-CNN jointly optimizes two closely-related tasks (i.e., facial landmark detection and FAC) to improve the performance of FAC by taking advantage of multi-task learning. To deal with the diverse learning complexities of facial attributes, we divide the attributes into two groups: objective attributes and subjective attributes. Two different network architectures are respectively designed to extract features for two groups of attributes, and a novel dynamic weighting scheme is proposed to automatically assign the loss weight to each facial attribute during training. Furthermore, an adaptive thresholding strategy is developed to effectively alleviate the problem of class imbalance for multi-label learning. Experimental results on the challenging CelebA and LFWA datasets show the superiority of the proposed DMM-CNN method compared with several state-of-the-art FAC methods.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2020.2969189</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Complexity theory ; Computer architecture ; Computer vision ; convolutional neural network ; Face ; Face recognition ; Facial attribute classification ; Facial features ; Feature extraction ; Learning ; multi-label learning ; multi-task learning ; Network architecture ; Pattern recognition ; Task analysis ; Training</subject><ispartof>IEEE transactions on affective computing, 2022-04, Vol.13 (2), p.818-828</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-1d80c6e6027ac46d55dd1f0e2a00f5cddbeb84297dac754a22274c55d30f50b53</citedby><cites>FETCH-LOGICAL-c295t-1d80c6e6027ac46d55dd1f0e2a00f5cddbeb84297dac754a22274c55d30f50b53</cites><orcidid>0000-0002-3674-7160 ; 0000-0003-1174-610X ; 0000-0003-1884-516X ; 0000-0002-6913-9786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8967026$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8967026$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mao, Longbiao</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Xue, Jing-Hao</creatorcontrib><creatorcontrib>Wang, Hanzi</creatorcontrib><title>Deep Multi-Task Multi-Label CNN for Effective Facial Attribute Classification</title><title>IEEE transactions on affective computing</title><addtitle>TAFFC</addtitle><description>Facial Attribute Classification (FAC) has attracted increasing attention in computer vision and pattern recognition. However, state-of-the-art FAC methods perform face detection/alignment and FAC independently. The inherent dependencies between these tasks are not fully exploited. In addition, most methods predict all facial attributes using the same CNN network architecture, which ignores the different learning complexities of facial attributes. To address the above problems, we propose a novel deep multi-task multi-label CNN, termed DMM-CNN, for effective FAC. Specifically, DMM-CNN jointly optimizes two closely-related tasks (i.e., facial landmark detection and FAC) to improve the performance of FAC by taking advantage of multi-task learning. To deal with the diverse learning complexities of facial attributes, we divide the attributes into two groups: objective attributes and subjective attributes. Two different network architectures are respectively designed to extract features for two groups of attributes, and a novel dynamic weighting scheme is proposed to automatically assign the loss weight to each facial attribute during training. Furthermore, an adaptive thresholding strategy is developed to effectively alleviate the problem of class imbalance for multi-label learning. Experimental results on the challenging CelebA and LFWA datasets show the superiority of the proposed DMM-CNN method compared with several state-of-the-art FAC methods.</description><subject>Classification</subject><subject>Complexity theory</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>convolutional neural network</subject><subject>Face</subject><subject>Face recognition</subject><subject>Facial attribute classification</subject><subject>Facial features</subject><subject>Feature extraction</subject><subject>Learning</subject><subject>multi-label learning</subject><subject>multi-task learning</subject><subject>Network architecture</subject><subject>Pattern recognition</subject><subject>Task analysis</subject><subject>Training</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAUhYMoOOb-gL4UfO68Sdq0eRx1VWGbL_M5pOkNZNZ1Jqngv7dzQ7wv98A95x74CLmlMKcU5MN2UdfVnAGDOZNC0lJekAmVmUw5ZPnlP31NZiHsYBzOuWDFhKwfEQ_JeuiiS7c6vJ_lSjfYJdVmk9jeJ0tr0UT3hUmtjdNdsojRu2aImFSdDsFZZ3R0_f6GXFndBZyd95S81ctt9ZyuXp9eqsUqNUzmMaVtCUagAFZok4k2z9uWWkCmAWxu2rbBpsyYLFptijzTjLEiM6OLj2docj4l96e_B99_Dhii2vWD34-ViomCUeBA6ehiJ5fxfQgerTp496H9t6KgjuTULzl1JKfO5MbQ3SnkEPEvUEpRABP8B0mTaJo</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Mao, Longbiao</creator><creator>Yan, Yan</creator><creator>Xue, Jing-Hao</creator><creator>Wang, Hanzi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3674-7160</orcidid><orcidid>https://orcid.org/0000-0003-1174-610X</orcidid><orcidid>https://orcid.org/0000-0003-1884-516X</orcidid><orcidid>https://orcid.org/0000-0002-6913-9786</orcidid></search><sort><creationdate>20220401</creationdate><title>Deep Multi-Task Multi-Label CNN for Effective Facial Attribute Classification</title><author>Mao, Longbiao ; Yan, Yan ; Xue, Jing-Hao ; Wang, Hanzi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-1d80c6e6027ac46d55dd1f0e2a00f5cddbeb84297dac754a22274c55d30f50b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classification</topic><topic>Complexity theory</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>convolutional neural network</topic><topic>Face</topic><topic>Face recognition</topic><topic>Facial attribute classification</topic><topic>Facial features</topic><topic>Feature extraction</topic><topic>Learning</topic><topic>multi-label learning</topic><topic>multi-task learning</topic><topic>Network architecture</topic><topic>Pattern recognition</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Longbiao</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Xue, Jing-Hao</creatorcontrib><creatorcontrib>Wang, Hanzi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mao, Longbiao</au><au>Yan, Yan</au><au>Xue, Jing-Hao</au><au>Wang, Hanzi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Multi-Task Multi-Label CNN for Effective Facial Attribute Classification</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>TAFFC</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>13</volume><issue>2</issue><spage>818</spage><epage>828</epage><pages>818-828</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>Facial Attribute Classification (FAC) has attracted increasing attention in computer vision and pattern recognition. However, state-of-the-art FAC methods perform face detection/alignment and FAC independently. The inherent dependencies between these tasks are not fully exploited. In addition, most methods predict all facial attributes using the same CNN network architecture, which ignores the different learning complexities of facial attributes. To address the above problems, we propose a novel deep multi-task multi-label CNN, termed DMM-CNN, for effective FAC. Specifically, DMM-CNN jointly optimizes two closely-related tasks (i.e., facial landmark detection and FAC) to improve the performance of FAC by taking advantage of multi-task learning. To deal with the diverse learning complexities of facial attributes, we divide the attributes into two groups: objective attributes and subjective attributes. Two different network architectures are respectively designed to extract features for two groups of attributes, and a novel dynamic weighting scheme is proposed to automatically assign the loss weight to each facial attribute during training. Furthermore, an adaptive thresholding strategy is developed to effectively alleviate the problem of class imbalance for multi-label learning. Experimental results on the challenging CelebA and LFWA datasets show the superiority of the proposed DMM-CNN method compared with several state-of-the-art FAC methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2020.2969189</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3674-7160</orcidid><orcidid>https://orcid.org/0000-0003-1174-610X</orcidid><orcidid>https://orcid.org/0000-0003-1884-516X</orcidid><orcidid>https://orcid.org/0000-0002-6913-9786</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2022-04, Vol.13 (2), p.818-828
issn 1949-3045
1949-3045
language eng
recordid cdi_proquest_journals_2672103011
source IEEE Electronic Library (IEL)
subjects Classification
Complexity theory
Computer architecture
Computer vision
convolutional neural network
Face
Face recognition
Facial attribute classification
Facial features
Feature extraction
Learning
multi-label learning
multi-task learning
Network architecture
Pattern recognition
Task analysis
Training
title Deep Multi-Task Multi-Label CNN for Effective Facial Attribute Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Multi-Task%20Multi-Label%20CNN%20for%20Effective%20Facial%20Attribute%20Classification&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Mao,%20Longbiao&rft.date=2022-04-01&rft.volume=13&rft.issue=2&rft.spage=818&rft.epage=828&rft.pages=818-828&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2020.2969189&rft_dat=%3Cproquest_RIE%3E2672103011%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672103011&rft_id=info:pmid/&rft_ieee_id=8967026&rfr_iscdi=true