Deep Multi-Task Multi-Label CNN for Effective Facial Attribute Classification
Facial Attribute Classification (FAC) has attracted increasing attention in computer vision and pattern recognition. However, state-of-the-art FAC methods perform face detection/alignment and FAC independently. The inherent dependencies between these tasks are not fully exploited. In addition, most...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on affective computing 2022-04, Vol.13 (2), p.818-828 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 828 |
---|---|
container_issue | 2 |
container_start_page | 818 |
container_title | IEEE transactions on affective computing |
container_volume | 13 |
creator | Mao, Longbiao Yan, Yan Xue, Jing-Hao Wang, Hanzi |
description | Facial Attribute Classification (FAC) has attracted increasing attention in computer vision and pattern recognition. However, state-of-the-art FAC methods perform face detection/alignment and FAC independently. The inherent dependencies between these tasks are not fully exploited. In addition, most methods predict all facial attributes using the same CNN network architecture, which ignores the different learning complexities of facial attributes. To address the above problems, we propose a novel deep multi-task multi-label CNN, termed DMM-CNN, for effective FAC. Specifically, DMM-CNN jointly optimizes two closely-related tasks (i.e., facial landmark detection and FAC) to improve the performance of FAC by taking advantage of multi-task learning. To deal with the diverse learning complexities of facial attributes, we divide the attributes into two groups: objective attributes and subjective attributes. Two different network architectures are respectively designed to extract features for two groups of attributes, and a novel dynamic weighting scheme is proposed to automatically assign the loss weight to each facial attribute during training. Furthermore, an adaptive thresholding strategy is developed to effectively alleviate the problem of class imbalance for multi-label learning. Experimental results on the challenging CelebA and LFWA datasets show the superiority of the proposed DMM-CNN method compared with several state-of-the-art FAC methods. |
doi_str_mv | 10.1109/TAFFC.2020.2969189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2672103011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8967026</ieee_id><sourcerecordid>2672103011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-1d80c6e6027ac46d55dd1f0e2a00f5cddbeb84297dac754a22274c55d30f50b53</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOOb-gL4UfO68Sdq0eRx1VWGbL_M5pOkNZNZ1Jqngv7dzQ7wv98A95x74CLmlMKcU5MN2UdfVnAGDOZNC0lJekAmVmUw5ZPnlP31NZiHsYBzOuWDFhKwfEQ_JeuiiS7c6vJ_lSjfYJdVmk9jeJ0tr0UT3hUmtjdNdsojRu2aImFSdDsFZZ3R0_f6GXFndBZyd95S81ctt9ZyuXp9eqsUqNUzmMaVtCUagAFZok4k2z9uWWkCmAWxu2rbBpsyYLFptijzTjLEiM6OLj2docj4l96e_B99_Dhii2vWD34-ViomCUeBA6ehiJ5fxfQgerTp496H9t6KgjuTULzl1JKfO5MbQ3SnkEPEvUEpRABP8B0mTaJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672103011</pqid></control><display><type>article</type><title>Deep Multi-Task Multi-Label CNN for Effective Facial Attribute Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Mao, Longbiao ; Yan, Yan ; Xue, Jing-Hao ; Wang, Hanzi</creator><creatorcontrib>Mao, Longbiao ; Yan, Yan ; Xue, Jing-Hao ; Wang, Hanzi</creatorcontrib><description>Facial Attribute Classification (FAC) has attracted increasing attention in computer vision and pattern recognition. However, state-of-the-art FAC methods perform face detection/alignment and FAC independently. The inherent dependencies between these tasks are not fully exploited. In addition, most methods predict all facial attributes using the same CNN network architecture, which ignores the different learning complexities of facial attributes. To address the above problems, we propose a novel deep multi-task multi-label CNN, termed DMM-CNN, for effective FAC. Specifically, DMM-CNN jointly optimizes two closely-related tasks (i.e., facial landmark detection and FAC) to improve the performance of FAC by taking advantage of multi-task learning. To deal with the diverse learning complexities of facial attributes, we divide the attributes into two groups: objective attributes and subjective attributes. Two different network architectures are respectively designed to extract features for two groups of attributes, and a novel dynamic weighting scheme is proposed to automatically assign the loss weight to each facial attribute during training. Furthermore, an adaptive thresholding strategy is developed to effectively alleviate the problem of class imbalance for multi-label learning. Experimental results on the challenging CelebA and LFWA datasets show the superiority of the proposed DMM-CNN method compared with several state-of-the-art FAC methods.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2020.2969189</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Complexity theory ; Computer architecture ; Computer vision ; convolutional neural network ; Face ; Face recognition ; Facial attribute classification ; Facial features ; Feature extraction ; Learning ; multi-label learning ; multi-task learning ; Network architecture ; Pattern recognition ; Task analysis ; Training</subject><ispartof>IEEE transactions on affective computing, 2022-04, Vol.13 (2), p.818-828</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-1d80c6e6027ac46d55dd1f0e2a00f5cddbeb84297dac754a22274c55d30f50b53</citedby><cites>FETCH-LOGICAL-c295t-1d80c6e6027ac46d55dd1f0e2a00f5cddbeb84297dac754a22274c55d30f50b53</cites><orcidid>0000-0002-3674-7160 ; 0000-0003-1174-610X ; 0000-0003-1884-516X ; 0000-0002-6913-9786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8967026$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8967026$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mao, Longbiao</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Xue, Jing-Hao</creatorcontrib><creatorcontrib>Wang, Hanzi</creatorcontrib><title>Deep Multi-Task Multi-Label CNN for Effective Facial Attribute Classification</title><title>IEEE transactions on affective computing</title><addtitle>TAFFC</addtitle><description>Facial Attribute Classification (FAC) has attracted increasing attention in computer vision and pattern recognition. However, state-of-the-art FAC methods perform face detection/alignment and FAC independently. The inherent dependencies between these tasks are not fully exploited. In addition, most methods predict all facial attributes using the same CNN network architecture, which ignores the different learning complexities of facial attributes. To address the above problems, we propose a novel deep multi-task multi-label CNN, termed DMM-CNN, for effective FAC. Specifically, DMM-CNN jointly optimizes two closely-related tasks (i.e., facial landmark detection and FAC) to improve the performance of FAC by taking advantage of multi-task learning. To deal with the diverse learning complexities of facial attributes, we divide the attributes into two groups: objective attributes and subjective attributes. Two different network architectures are respectively designed to extract features for two groups of attributes, and a novel dynamic weighting scheme is proposed to automatically assign the loss weight to each facial attribute during training. Furthermore, an adaptive thresholding strategy is developed to effectively alleviate the problem of class imbalance for multi-label learning. Experimental results on the challenging CelebA and LFWA datasets show the superiority of the proposed DMM-CNN method compared with several state-of-the-art FAC methods.</description><subject>Classification</subject><subject>Complexity theory</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>convolutional neural network</subject><subject>Face</subject><subject>Face recognition</subject><subject>Facial attribute classification</subject><subject>Facial features</subject><subject>Feature extraction</subject><subject>Learning</subject><subject>multi-label learning</subject><subject>multi-task learning</subject><subject>Network architecture</subject><subject>Pattern recognition</subject><subject>Task analysis</subject><subject>Training</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAUhYMoOOb-gL4UfO68Sdq0eRx1VWGbL_M5pOkNZNZ1Jqngv7dzQ7wv98A95x74CLmlMKcU5MN2UdfVnAGDOZNC0lJekAmVmUw5ZPnlP31NZiHsYBzOuWDFhKwfEQ_JeuiiS7c6vJ_lSjfYJdVmk9jeJ0tr0UT3hUmtjdNdsojRu2aImFSdDsFZZ3R0_f6GXFndBZyd95S81ctt9ZyuXp9eqsUqNUzmMaVtCUagAFZok4k2z9uWWkCmAWxu2rbBpsyYLFptijzTjLEiM6OLj2docj4l96e_B99_Dhii2vWD34-ViomCUeBA6ehiJ5fxfQgerTp496H9t6KgjuTULzl1JKfO5MbQ3SnkEPEvUEpRABP8B0mTaJo</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Mao, Longbiao</creator><creator>Yan, Yan</creator><creator>Xue, Jing-Hao</creator><creator>Wang, Hanzi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3674-7160</orcidid><orcidid>https://orcid.org/0000-0003-1174-610X</orcidid><orcidid>https://orcid.org/0000-0003-1884-516X</orcidid><orcidid>https://orcid.org/0000-0002-6913-9786</orcidid></search><sort><creationdate>20220401</creationdate><title>Deep Multi-Task Multi-Label CNN for Effective Facial Attribute Classification</title><author>Mao, Longbiao ; Yan, Yan ; Xue, Jing-Hao ; Wang, Hanzi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-1d80c6e6027ac46d55dd1f0e2a00f5cddbeb84297dac754a22274c55d30f50b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classification</topic><topic>Complexity theory</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>convolutional neural network</topic><topic>Face</topic><topic>Face recognition</topic><topic>Facial attribute classification</topic><topic>Facial features</topic><topic>Feature extraction</topic><topic>Learning</topic><topic>multi-label learning</topic><topic>multi-task learning</topic><topic>Network architecture</topic><topic>Pattern recognition</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Longbiao</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Xue, Jing-Hao</creatorcontrib><creatorcontrib>Wang, Hanzi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mao, Longbiao</au><au>Yan, Yan</au><au>Xue, Jing-Hao</au><au>Wang, Hanzi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Multi-Task Multi-Label CNN for Effective Facial Attribute Classification</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>TAFFC</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>13</volume><issue>2</issue><spage>818</spage><epage>828</epage><pages>818-828</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>Facial Attribute Classification (FAC) has attracted increasing attention in computer vision and pattern recognition. However, state-of-the-art FAC methods perform face detection/alignment and FAC independently. The inherent dependencies between these tasks are not fully exploited. In addition, most methods predict all facial attributes using the same CNN network architecture, which ignores the different learning complexities of facial attributes. To address the above problems, we propose a novel deep multi-task multi-label CNN, termed DMM-CNN, for effective FAC. Specifically, DMM-CNN jointly optimizes two closely-related tasks (i.e., facial landmark detection and FAC) to improve the performance of FAC by taking advantage of multi-task learning. To deal with the diverse learning complexities of facial attributes, we divide the attributes into two groups: objective attributes and subjective attributes. Two different network architectures are respectively designed to extract features for two groups of attributes, and a novel dynamic weighting scheme is proposed to automatically assign the loss weight to each facial attribute during training. Furthermore, an adaptive thresholding strategy is developed to effectively alleviate the problem of class imbalance for multi-label learning. Experimental results on the challenging CelebA and LFWA datasets show the superiority of the proposed DMM-CNN method compared with several state-of-the-art FAC methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2020.2969189</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3674-7160</orcidid><orcidid>https://orcid.org/0000-0003-1174-610X</orcidid><orcidid>https://orcid.org/0000-0003-1884-516X</orcidid><orcidid>https://orcid.org/0000-0002-6913-9786</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3045 |
ispartof | IEEE transactions on affective computing, 2022-04, Vol.13 (2), p.818-828 |
issn | 1949-3045 1949-3045 |
language | eng |
recordid | cdi_proquest_journals_2672103011 |
source | IEEE Electronic Library (IEL) |
subjects | Classification Complexity theory Computer architecture Computer vision convolutional neural network Face Face recognition Facial attribute classification Facial features Feature extraction Learning multi-label learning multi-task learning Network architecture Pattern recognition Task analysis Training |
title | Deep Multi-Task Multi-Label CNN for Effective Facial Attribute Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Multi-Task%20Multi-Label%20CNN%20for%20Effective%20Facial%20Attribute%20Classification&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Mao,%20Longbiao&rft.date=2022-04-01&rft.volume=13&rft.issue=2&rft.spage=818&rft.epage=828&rft.pages=818-828&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2020.2969189&rft_dat=%3Cproquest_RIE%3E2672103011%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672103011&rft_id=info:pmid/&rft_ieee_id=8967026&rfr_iscdi=true |