Data-Driven Deep Supervision for Medical Image Segmentation
Medical image segmentation plays a vital role in disease diagnosis and analysis. However, data-dependent difficulties such as low image contrast, noisy background, and complicated objects of interest render the segmentation problem challenging. These difficulties diminish dense prediction and make i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2022-06, Vol.41 (6), p.1560-1574 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1574 |
---|---|
container_issue | 6 |
container_start_page | 1560 |
container_title | IEEE transactions on medical imaging |
container_volume | 41 |
creator | Mishra, Suraj Zhang, Yizhe Chen, Danny Z. Hu, X. Sharon |
description | Medical image segmentation plays a vital role in disease diagnosis and analysis. However, data-dependent difficulties such as low image contrast, noisy background, and complicated objects of interest render the segmentation problem challenging. These difficulties diminish dense prediction and make it tough for known approaches to explore data-specific attributes for robust feature extraction. In this paper, we study medical image segmentation by focusing on robust data-specific feature extraction to achieve improved dense prediction. We propose a new deep convolutional neural network (CNN), which exploits specific attributes of input datasets to utilize deep supervision for enhanced feature extraction. In particular, we strategically locate and deploy auxiliary supervision, by matching the object perceptive field (OPF) (which we define and compute) with the layer-wise effective receptive fields (LERF) of the network. This helps the model pay close attention to some distinct input data dependent features, which the network might otherwise 'ignore' during training. Further, to achieve better target localization and refined dense prediction, we propose the densely decoded networks (DDN), by selectively introducing additional network connections (the 'crutch' connections). Using five public datasets (two retinal vessel, melanoma, optic disc/cup, and spleen segmentation) and two in-house datasets (lymph node and fungus segmentation), we verify the effectiveness of our proposed approach in 2D and 3D segmentation. |
doi_str_mv | 10.1109/TMI.2022.3143371 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2672088758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9681897</ieee_id><sourcerecordid>2620081471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-6ca24ad3e3e7ed3c7329da1aab421733694b61fa0b317adf902a05722456dcec3</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRbK3uBUECbtyk3nlkZoIraX0UWly0grthktyUSB51Jin4701p7cLVXZzvHC4fIdcUxpRC_LBazMYMGBtzKjhX9IQMaRTpkEXi85QMgSkdAkg2IBfefwFQEUF8TgY8Ag6g5JA8Tm1rw6krtlgHU8RNsOw26LaFL5o6yBsXLDArUlsGs8quMVjiusK6tW0fX5Kz3JYerw53RD5enleTt3D-_jqbPM3DlOu4DWVqmbAZR44KM54qzuLMUmsTwajiXMYikTS3kHCqbJbHwCxEijERySzFlI_I_X5345rvDn1rqsKnWJa2xqbzhkkGoKlQtEfv_qFfTefq_rueUgy0VpHuKdhTqWu8d5ibjSsq634MBbMTa3qxZifWHMT2ldvDcJdUmB0LfyZ74GYPFIh4jGOpqY4V_wX2_Xoz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672088758</pqid></control><display><type>article</type><title>Data-Driven Deep Supervision for Medical Image Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Mishra, Suraj ; Zhang, Yizhe ; Chen, Danny Z. ; Hu, X. Sharon</creator><creatorcontrib>Mishra, Suraj ; Zhang, Yizhe ; Chen, Danny Z. ; Hu, X. Sharon</creatorcontrib><description>Medical image segmentation plays a vital role in disease diagnosis and analysis. However, data-dependent difficulties such as low image contrast, noisy background, and complicated objects of interest render the segmentation problem challenging. These difficulties diminish dense prediction and make it tough for known approaches to explore data-specific attributes for robust feature extraction. In this paper, we study medical image segmentation by focusing on robust data-specific feature extraction to achieve improved dense prediction. We propose a new deep convolutional neural network (CNN), which exploits specific attributes of input datasets to utilize deep supervision for enhanced feature extraction. In particular, we strategically locate and deploy auxiliary supervision, by matching the object perceptive field (OPF) (which we define and compute) with the layer-wise effective receptive fields (LERF) of the network. This helps the model pay close attention to some distinct input data dependent features, which the network might otherwise 'ignore' during training. Further, to achieve better target localization and refined dense prediction, we propose the densely decoded networks (DDN), by selectively introducing additional network connections (the 'crutch' connections). Using five public datasets (two retinal vessel, melanoma, optic disc/cup, and spleen segmentation) and two in-house datasets (lymph node and fungus segmentation), we verify the effectiveness of our proposed approach in 2D and 3D segmentation.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2022.3143371</identifier><identifier>PMID: 35030076</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>2D and 3D images ; Artificial neural networks ; Background noise ; Blood vessels ; Convolutional neural network ; Convolutional neural networks ; Datasets ; deep supervision ; Feature extraction ; Image contrast ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Localization ; Lymph nodes ; Medical imaging ; Melanoma ; Neural networks ; Neural Networks, Computer ; Optical imaging ; Optical sensors ; Predictions ; receptive field ; Retinal Vessels ; Robustness ; segmentation ; Spleen ; Supervision ; Three-dimensional displays</subject><ispartof>IEEE transactions on medical imaging, 2022-06, Vol.41 (6), p.1560-1574</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-6ca24ad3e3e7ed3c7329da1aab421733694b61fa0b317adf902a05722456dcec3</citedby><cites>FETCH-LOGICAL-c389t-6ca24ad3e3e7ed3c7329da1aab421733694b61fa0b317adf902a05722456dcec3</cites><orcidid>0000-0002-6636-9738 ; 0000-0002-8922-9068 ; 0000-0001-6565-2884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9681897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9681897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35030076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mishra, Suraj</creatorcontrib><creatorcontrib>Zhang, Yizhe</creatorcontrib><creatorcontrib>Chen, Danny Z.</creatorcontrib><creatorcontrib>Hu, X. Sharon</creatorcontrib><title>Data-Driven Deep Supervision for Medical Image Segmentation</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Medical image segmentation plays a vital role in disease diagnosis and analysis. However, data-dependent difficulties such as low image contrast, noisy background, and complicated objects of interest render the segmentation problem challenging. These difficulties diminish dense prediction and make it tough for known approaches to explore data-specific attributes for robust feature extraction. In this paper, we study medical image segmentation by focusing on robust data-specific feature extraction to achieve improved dense prediction. We propose a new deep convolutional neural network (CNN), which exploits specific attributes of input datasets to utilize deep supervision for enhanced feature extraction. In particular, we strategically locate and deploy auxiliary supervision, by matching the object perceptive field (OPF) (which we define and compute) with the layer-wise effective receptive fields (LERF) of the network. This helps the model pay close attention to some distinct input data dependent features, which the network might otherwise 'ignore' during training. Further, to achieve better target localization and refined dense prediction, we propose the densely decoded networks (DDN), by selectively introducing additional network connections (the 'crutch' connections). Using five public datasets (two retinal vessel, melanoma, optic disc/cup, and spleen segmentation) and two in-house datasets (lymph node and fungus segmentation), we verify the effectiveness of our proposed approach in 2D and 3D segmentation.</description><subject>2D and 3D images</subject><subject>Artificial neural networks</subject><subject>Background noise</subject><subject>Blood vessels</subject><subject>Convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>deep supervision</subject><subject>Feature extraction</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Localization</subject><subject>Lymph nodes</subject><subject>Medical imaging</subject><subject>Melanoma</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Optical imaging</subject><subject>Optical sensors</subject><subject>Predictions</subject><subject>receptive field</subject><subject>Retinal Vessels</subject><subject>Robustness</subject><subject>segmentation</subject><subject>Spleen</subject><subject>Supervision</subject><subject>Three-dimensional displays</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtLw0AUhQdRbK3uBUECbtyk3nlkZoIraX0UWly0grthktyUSB51Jin4701p7cLVXZzvHC4fIdcUxpRC_LBazMYMGBtzKjhX9IQMaRTpkEXi85QMgSkdAkg2IBfefwFQEUF8TgY8Ag6g5JA8Tm1rw6krtlgHU8RNsOw26LaFL5o6yBsXLDArUlsGs8quMVjiusK6tW0fX5Kz3JYerw53RD5enleTt3D-_jqbPM3DlOu4DWVqmbAZR44KM54qzuLMUmsTwajiXMYikTS3kHCqbJbHwCxEijERySzFlI_I_X5345rvDn1rqsKnWJa2xqbzhkkGoKlQtEfv_qFfTefq_rueUgy0VpHuKdhTqWu8d5ibjSsq634MBbMTa3qxZifWHMT2ldvDcJdUmB0LfyZ74GYPFIh4jGOpqY4V_wX2_Xoz</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Mishra, Suraj</creator><creator>Zhang, Yizhe</creator><creator>Chen, Danny Z.</creator><creator>Hu, X. Sharon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6636-9738</orcidid><orcidid>https://orcid.org/0000-0002-8922-9068</orcidid><orcidid>https://orcid.org/0000-0001-6565-2884</orcidid></search><sort><creationdate>20220601</creationdate><title>Data-Driven Deep Supervision for Medical Image Segmentation</title><author>Mishra, Suraj ; Zhang, Yizhe ; Chen, Danny Z. ; Hu, X. Sharon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-6ca24ad3e3e7ed3c7329da1aab421733694b61fa0b317adf902a05722456dcec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2D and 3D images</topic><topic>Artificial neural networks</topic><topic>Background noise</topic><topic>Blood vessels</topic><topic>Convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>deep supervision</topic><topic>Feature extraction</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Localization</topic><topic>Lymph nodes</topic><topic>Medical imaging</topic><topic>Melanoma</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Optical imaging</topic><topic>Optical sensors</topic><topic>Predictions</topic><topic>receptive field</topic><topic>Retinal Vessels</topic><topic>Robustness</topic><topic>segmentation</topic><topic>Spleen</topic><topic>Supervision</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Suraj</creatorcontrib><creatorcontrib>Zhang, Yizhe</creatorcontrib><creatorcontrib>Chen, Danny Z.</creatorcontrib><creatorcontrib>Hu, X. Sharon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mishra, Suraj</au><au>Zhang, Yizhe</au><au>Chen, Danny Z.</au><au>Hu, X. Sharon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Deep Supervision for Medical Image Segmentation</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>41</volume><issue>6</issue><spage>1560</spage><epage>1574</epage><pages>1560-1574</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Medical image segmentation plays a vital role in disease diagnosis and analysis. However, data-dependent difficulties such as low image contrast, noisy background, and complicated objects of interest render the segmentation problem challenging. These difficulties diminish dense prediction and make it tough for known approaches to explore data-specific attributes for robust feature extraction. In this paper, we study medical image segmentation by focusing on robust data-specific feature extraction to achieve improved dense prediction. We propose a new deep convolutional neural network (CNN), which exploits specific attributes of input datasets to utilize deep supervision for enhanced feature extraction. In particular, we strategically locate and deploy auxiliary supervision, by matching the object perceptive field (OPF) (which we define and compute) with the layer-wise effective receptive fields (LERF) of the network. This helps the model pay close attention to some distinct input data dependent features, which the network might otherwise 'ignore' during training. Further, to achieve better target localization and refined dense prediction, we propose the densely decoded networks (DDN), by selectively introducing additional network connections (the 'crutch' connections). Using five public datasets (two retinal vessel, melanoma, optic disc/cup, and spleen segmentation) and two in-house datasets (lymph node and fungus segmentation), we verify the effectiveness of our proposed approach in 2D and 3D segmentation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35030076</pmid><doi>10.1109/TMI.2022.3143371</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6636-9738</orcidid><orcidid>https://orcid.org/0000-0002-8922-9068</orcidid><orcidid>https://orcid.org/0000-0001-6565-2884</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2022-06, Vol.41 (6), p.1560-1574 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_journals_2672088758 |
source | IEEE Electronic Library (IEL) |
subjects | 2D and 3D images Artificial neural networks Background noise Blood vessels Convolutional neural network Convolutional neural networks Datasets deep supervision Feature extraction Image contrast Image processing Image Processing, Computer-Assisted - methods Image segmentation Localization Lymph nodes Medical imaging Melanoma Neural networks Neural Networks, Computer Optical imaging Optical sensors Predictions receptive field Retinal Vessels Robustness segmentation Spleen Supervision Three-dimensional displays |
title | Data-Driven Deep Supervision for Medical Image Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Deep%20Supervision%20for%20Medical%20Image%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Mishra,%20Suraj&rft.date=2022-06-01&rft.volume=41&rft.issue=6&rft.spage=1560&rft.epage=1574&rft.pages=1560-1574&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2022.3143371&rft_dat=%3Cproquest_RIE%3E2620081471%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672088758&rft_id=info:pmid/35030076&rft_ieee_id=9681897&rfr_iscdi=true |