Data-Driven Deep Supervision for Medical Image Segmentation

Medical image segmentation plays a vital role in disease diagnosis and analysis. However, data-dependent difficulties such as low image contrast, noisy background, and complicated objects of interest render the segmentation problem challenging. These difficulties diminish dense prediction and make i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2022-06, Vol.41 (6), p.1560-1574
Hauptverfasser: Mishra, Suraj, Zhang, Yizhe, Chen, Danny Z., Hu, X. Sharon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1574
container_issue 6
container_start_page 1560
container_title IEEE transactions on medical imaging
container_volume 41
creator Mishra, Suraj
Zhang, Yizhe
Chen, Danny Z.
Hu, X. Sharon
description Medical image segmentation plays a vital role in disease diagnosis and analysis. However, data-dependent difficulties such as low image contrast, noisy background, and complicated objects of interest render the segmentation problem challenging. These difficulties diminish dense prediction and make it tough for known approaches to explore data-specific attributes for robust feature extraction. In this paper, we study medical image segmentation by focusing on robust data-specific feature extraction to achieve improved dense prediction. We propose a new deep convolutional neural network (CNN), which exploits specific attributes of input datasets to utilize deep supervision for enhanced feature extraction. In particular, we strategically locate and deploy auxiliary supervision, by matching the object perceptive field (OPF) (which we define and compute) with the layer-wise effective receptive fields (LERF) of the network. This helps the model pay close attention to some distinct input data dependent features, which the network might otherwise 'ignore' during training. Further, to achieve better target localization and refined dense prediction, we propose the densely decoded networks (DDN), by selectively introducing additional network connections (the 'crutch' connections). Using five public datasets (two retinal vessel, melanoma, optic disc/cup, and spleen segmentation) and two in-house datasets (lymph node and fungus segmentation), we verify the effectiveness of our proposed approach in 2D and 3D segmentation.
doi_str_mv 10.1109/TMI.2022.3143371
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2672088758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9681897</ieee_id><sourcerecordid>2620081471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-6ca24ad3e3e7ed3c7329da1aab421733694b61fa0b317adf902a05722456dcec3</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRbK3uBUECbtyk3nlkZoIraX0UWly0grthktyUSB51Jin4701p7cLVXZzvHC4fIdcUxpRC_LBazMYMGBtzKjhX9IQMaRTpkEXi85QMgSkdAkg2IBfefwFQEUF8TgY8Ag6g5JA8Tm1rw6krtlgHU8RNsOw26LaFL5o6yBsXLDArUlsGs8quMVjiusK6tW0fX5Kz3JYerw53RD5enleTt3D-_jqbPM3DlOu4DWVqmbAZR44KM54qzuLMUmsTwajiXMYikTS3kHCqbJbHwCxEijERySzFlI_I_X5345rvDn1rqsKnWJa2xqbzhkkGoKlQtEfv_qFfTefq_rueUgy0VpHuKdhTqWu8d5ibjSsq634MBbMTa3qxZifWHMT2ldvDcJdUmB0LfyZ74GYPFIh4jGOpqY4V_wX2_Xoz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672088758</pqid></control><display><type>article</type><title>Data-Driven Deep Supervision for Medical Image Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Mishra, Suraj ; Zhang, Yizhe ; Chen, Danny Z. ; Hu, X. Sharon</creator><creatorcontrib>Mishra, Suraj ; Zhang, Yizhe ; Chen, Danny Z. ; Hu, X. Sharon</creatorcontrib><description>Medical image segmentation plays a vital role in disease diagnosis and analysis. However, data-dependent difficulties such as low image contrast, noisy background, and complicated objects of interest render the segmentation problem challenging. These difficulties diminish dense prediction and make it tough for known approaches to explore data-specific attributes for robust feature extraction. In this paper, we study medical image segmentation by focusing on robust data-specific feature extraction to achieve improved dense prediction. We propose a new deep convolutional neural network (CNN), which exploits specific attributes of input datasets to utilize deep supervision for enhanced feature extraction. In particular, we strategically locate and deploy auxiliary supervision, by matching the object perceptive field (OPF) (which we define and compute) with the layer-wise effective receptive fields (LERF) of the network. This helps the model pay close attention to some distinct input data dependent features, which the network might otherwise 'ignore' during training. Further, to achieve better target localization and refined dense prediction, we propose the densely decoded networks (DDN), by selectively introducing additional network connections (the 'crutch' connections). Using five public datasets (two retinal vessel, melanoma, optic disc/cup, and spleen segmentation) and two in-house datasets (lymph node and fungus segmentation), we verify the effectiveness of our proposed approach in 2D and 3D segmentation.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2022.3143371</identifier><identifier>PMID: 35030076</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>2D and 3D images ; Artificial neural networks ; Background noise ; Blood vessels ; Convolutional neural network ; Convolutional neural networks ; Datasets ; deep supervision ; Feature extraction ; Image contrast ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Localization ; Lymph nodes ; Medical imaging ; Melanoma ; Neural networks ; Neural Networks, Computer ; Optical imaging ; Optical sensors ; Predictions ; receptive field ; Retinal Vessels ; Robustness ; segmentation ; Spleen ; Supervision ; Three-dimensional displays</subject><ispartof>IEEE transactions on medical imaging, 2022-06, Vol.41 (6), p.1560-1574</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-6ca24ad3e3e7ed3c7329da1aab421733694b61fa0b317adf902a05722456dcec3</citedby><cites>FETCH-LOGICAL-c389t-6ca24ad3e3e7ed3c7329da1aab421733694b61fa0b317adf902a05722456dcec3</cites><orcidid>0000-0002-6636-9738 ; 0000-0002-8922-9068 ; 0000-0001-6565-2884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9681897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9681897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35030076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mishra, Suraj</creatorcontrib><creatorcontrib>Zhang, Yizhe</creatorcontrib><creatorcontrib>Chen, Danny Z.</creatorcontrib><creatorcontrib>Hu, X. Sharon</creatorcontrib><title>Data-Driven Deep Supervision for Medical Image Segmentation</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Medical image segmentation plays a vital role in disease diagnosis and analysis. However, data-dependent difficulties such as low image contrast, noisy background, and complicated objects of interest render the segmentation problem challenging. These difficulties diminish dense prediction and make it tough for known approaches to explore data-specific attributes for robust feature extraction. In this paper, we study medical image segmentation by focusing on robust data-specific feature extraction to achieve improved dense prediction. We propose a new deep convolutional neural network (CNN), which exploits specific attributes of input datasets to utilize deep supervision for enhanced feature extraction. In particular, we strategically locate and deploy auxiliary supervision, by matching the object perceptive field (OPF) (which we define and compute) with the layer-wise effective receptive fields (LERF) of the network. This helps the model pay close attention to some distinct input data dependent features, which the network might otherwise 'ignore' during training. Further, to achieve better target localization and refined dense prediction, we propose the densely decoded networks (DDN), by selectively introducing additional network connections (the 'crutch' connections). Using five public datasets (two retinal vessel, melanoma, optic disc/cup, and spleen segmentation) and two in-house datasets (lymph node and fungus segmentation), we verify the effectiveness of our proposed approach in 2D and 3D segmentation.</description><subject>2D and 3D images</subject><subject>Artificial neural networks</subject><subject>Background noise</subject><subject>Blood vessels</subject><subject>Convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>deep supervision</subject><subject>Feature extraction</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Localization</subject><subject>Lymph nodes</subject><subject>Medical imaging</subject><subject>Melanoma</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Optical imaging</subject><subject>Optical sensors</subject><subject>Predictions</subject><subject>receptive field</subject><subject>Retinal Vessels</subject><subject>Robustness</subject><subject>segmentation</subject><subject>Spleen</subject><subject>Supervision</subject><subject>Three-dimensional displays</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtLw0AUhQdRbK3uBUECbtyk3nlkZoIraX0UWly0grthktyUSB51Jin4701p7cLVXZzvHC4fIdcUxpRC_LBazMYMGBtzKjhX9IQMaRTpkEXi85QMgSkdAkg2IBfefwFQEUF8TgY8Ag6g5JA8Tm1rw6krtlgHU8RNsOw26LaFL5o6yBsXLDArUlsGs8quMVjiusK6tW0fX5Kz3JYerw53RD5enleTt3D-_jqbPM3DlOu4DWVqmbAZR44KM54qzuLMUmsTwajiXMYikTS3kHCqbJbHwCxEijERySzFlI_I_X5345rvDn1rqsKnWJa2xqbzhkkGoKlQtEfv_qFfTefq_rueUgy0VpHuKdhTqWu8d5ibjSsq634MBbMTa3qxZifWHMT2ldvDcJdUmB0LfyZ74GYPFIh4jGOpqY4V_wX2_Xoz</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Mishra, Suraj</creator><creator>Zhang, Yizhe</creator><creator>Chen, Danny Z.</creator><creator>Hu, X. Sharon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6636-9738</orcidid><orcidid>https://orcid.org/0000-0002-8922-9068</orcidid><orcidid>https://orcid.org/0000-0001-6565-2884</orcidid></search><sort><creationdate>20220601</creationdate><title>Data-Driven Deep Supervision for Medical Image Segmentation</title><author>Mishra, Suraj ; Zhang, Yizhe ; Chen, Danny Z. ; Hu, X. Sharon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-6ca24ad3e3e7ed3c7329da1aab421733694b61fa0b317adf902a05722456dcec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2D and 3D images</topic><topic>Artificial neural networks</topic><topic>Background noise</topic><topic>Blood vessels</topic><topic>Convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>deep supervision</topic><topic>Feature extraction</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Localization</topic><topic>Lymph nodes</topic><topic>Medical imaging</topic><topic>Melanoma</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Optical imaging</topic><topic>Optical sensors</topic><topic>Predictions</topic><topic>receptive field</topic><topic>Retinal Vessels</topic><topic>Robustness</topic><topic>segmentation</topic><topic>Spleen</topic><topic>Supervision</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Suraj</creatorcontrib><creatorcontrib>Zhang, Yizhe</creatorcontrib><creatorcontrib>Chen, Danny Z.</creatorcontrib><creatorcontrib>Hu, X. Sharon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mishra, Suraj</au><au>Zhang, Yizhe</au><au>Chen, Danny Z.</au><au>Hu, X. Sharon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Deep Supervision for Medical Image Segmentation</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>41</volume><issue>6</issue><spage>1560</spage><epage>1574</epage><pages>1560-1574</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Medical image segmentation plays a vital role in disease diagnosis and analysis. However, data-dependent difficulties such as low image contrast, noisy background, and complicated objects of interest render the segmentation problem challenging. These difficulties diminish dense prediction and make it tough for known approaches to explore data-specific attributes for robust feature extraction. In this paper, we study medical image segmentation by focusing on robust data-specific feature extraction to achieve improved dense prediction. We propose a new deep convolutional neural network (CNN), which exploits specific attributes of input datasets to utilize deep supervision for enhanced feature extraction. In particular, we strategically locate and deploy auxiliary supervision, by matching the object perceptive field (OPF) (which we define and compute) with the layer-wise effective receptive fields (LERF) of the network. This helps the model pay close attention to some distinct input data dependent features, which the network might otherwise 'ignore' during training. Further, to achieve better target localization and refined dense prediction, we propose the densely decoded networks (DDN), by selectively introducing additional network connections (the 'crutch' connections). Using five public datasets (two retinal vessel, melanoma, optic disc/cup, and spleen segmentation) and two in-house datasets (lymph node and fungus segmentation), we verify the effectiveness of our proposed approach in 2D and 3D segmentation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35030076</pmid><doi>10.1109/TMI.2022.3143371</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6636-9738</orcidid><orcidid>https://orcid.org/0000-0002-8922-9068</orcidid><orcidid>https://orcid.org/0000-0001-6565-2884</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2022-06, Vol.41 (6), p.1560-1574
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_journals_2672088758
source IEEE Electronic Library (IEL)
subjects 2D and 3D images
Artificial neural networks
Background noise
Blood vessels
Convolutional neural network
Convolutional neural networks
Datasets
deep supervision
Feature extraction
Image contrast
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Localization
Lymph nodes
Medical imaging
Melanoma
Neural networks
Neural Networks, Computer
Optical imaging
Optical sensors
Predictions
receptive field
Retinal Vessels
Robustness
segmentation
Spleen
Supervision
Three-dimensional displays
title Data-Driven Deep Supervision for Medical Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Deep%20Supervision%20for%20Medical%20Image%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Mishra,%20Suraj&rft.date=2022-06-01&rft.volume=41&rft.issue=6&rft.spage=1560&rft.epage=1574&rft.pages=1560-1574&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2022.3143371&rft_dat=%3Cproquest_RIE%3E2620081471%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672088758&rft_id=info:pmid/35030076&rft_ieee_id=9681897&rfr_iscdi=true