Free Suspended Thin-Walled Nickel Electroplated Tubes for Microfluidic Density and Mass Flow Sensors

In this paper, a novel fabrication method is proposed for microfluidic tubes with a large diameter, circular cross-section, and thin wall. These properties make the tubes especially suitable for density sensors and Coriolis mass flow sensors, because of the resulting low tube mass, low-pressure drop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2022-06, Vol.31 (3), p.408-414
Hauptverfasser: Yariesbouei, Mahdieh, Sanders, Remco G. P., Moazzenzade, Taghi, Wiegerink, Remco J., Lotters, Joost C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue 3
container_start_page 408
container_title Journal of microelectromechanical systems
container_volume 31
creator Yariesbouei, Mahdieh
Sanders, Remco G. P.
Moazzenzade, Taghi
Wiegerink, Remco J.
Lotters, Joost C.
description In this paper, a novel fabrication method is proposed for microfluidic tubes with a large diameter, circular cross-section, and thin wall. These properties make the tubes especially suitable for density sensors and Coriolis mass flow sensors, because of the resulting low tube mass, low-pressure drop, and low pressure-dependence of the tube shape. A demonstrator sensor was fabricated and the first measurement results of fluid density and mass flow are presented. The low-cost fabrication method is based on electroplating technology and results in tubes with a near-perfect circular cross-section. Diameters ranging from 120 \mu \text{m} to 1 mm and wall thicknesses from 8~\mu \text{m} to 60 \mu \text{m} have been achieved. For the demonstrator sensor presented in this paper a freely suspended tube was realized with a total length of 37 mm, a diameter of 600 \mu \text{m} , and a wall thickness of 20 \mu \text{m} . Density measurements were performed using various gases, liquids, and liquid mixtures at 21°C to 23°C lab temperature. The accuracy of the measured densities of gases such as nitrogen, argon, and helium is 5%. For liquids including DI water, isopropyl alcohol (IPA), and their various mixtures an accuracy of 0.5% was obtained. Preliminary mass flow rate measurements were performed with water and isopropyl alcohol up to 30 g/h with less than 30 mbar pressure drop thanks to the large tube diameter. [2021-0179]
doi_str_mv 10.1109/JMEMS.2022.3149632
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2672087634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9723504</ieee_id><sourcerecordid>2672087634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-1f476b2f7085e3da8bb02085b44f9324bedb531e1abc11d000e2b4c8e9c6ea823</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhCMEEqXwB-BiiXOKX4mTI4KWhxo4tIij5cdGpJgk2IlQ_z0urTjtaDUzu_qS5JLgGSG4vHmu5tVqRjGlM0Z4mTN6lExIyUmKSVYcR40zkQqSidPkLIQNxoTzIp8kduEB0GoMPbQWLFp_NG36rpyL-qUxn-DQ3IEZfNc7NewMo4aA6s6jqjG-q93Y2Mage2hDM2yRai2qVAho4boftIrbzofz5KRWLsDFYU6Tt8V8ffeYLl8fnu5ul6lhrBxSUnORa1oLXGTArCq0xjRqzXldMso1WJ0xAkRpQ4jFGAPV3BRQmhxUQdk0ud739r77HiEMctONvo0nJc1FrBI549FF9674fggeatn75kv5rSRY7mjKP5pyR1MeaMbQ1T7UAMB_oBSUZZizX6v2cS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672087634</pqid></control><display><type>article</type><title>Free Suspended Thin-Walled Nickel Electroplated Tubes for Microfluidic Density and Mass Flow Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Yariesbouei, Mahdieh ; Sanders, Remco G. P. ; Moazzenzade, Taghi ; Wiegerink, Remco J. ; Lotters, Joost C.</creator><creatorcontrib>Yariesbouei, Mahdieh ; Sanders, Remco G. P. ; Moazzenzade, Taghi ; Wiegerink, Remco J. ; Lotters, Joost C.</creatorcontrib><description><![CDATA[In this paper, a novel fabrication method is proposed for microfluidic tubes with a large diameter, circular cross-section, and thin wall. These properties make the tubes especially suitable for density sensors and Coriolis mass flow sensors, because of the resulting low tube mass, low-pressure drop, and low pressure-dependence of the tube shape. A demonstrator sensor was fabricated and the first measurement results of fluid density and mass flow are presented. The low-cost fabrication method is based on electroplating technology and results in tubes with a near-perfect circular cross-section. Diameters ranging from 120 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> to 1 mm and wall thicknesses from <inline-formula> <tex-math notation="LaTeX">8~\mu \text{m} </tex-math></inline-formula> to 60 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> have been achieved. For the demonstrator sensor presented in this paper a freely suspended tube was realized with a total length of 37 mm, a diameter of 600 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, and a wall thickness of 20 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>. Density measurements were performed using various gases, liquids, and liquid mixtures at 21°C to 23°C lab temperature. The accuracy of the measured densities of gases such as nitrogen, argon, and helium is 5%. For liquids including DI water, isopropyl alcohol (IPA), and their various mixtures an accuracy of 0.5% was obtained. Preliminary mass flow rate measurements were performed with water and isopropyl alcohol up to 30 g/h with less than 30 mbar pressure drop thanks to the large tube diameter. [2021-0179]]]></description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2022.3149632</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Argon ; Cross-sections ; Cylindrical tube ; Density ; Density measurement ; density sensor ; Diameters ; Electrochemical deposition ; Electron tubes ; Electroplating ; Fabrication ; Flow control ; Isopropanol ; Liquids ; Low pressure ; Mass flow rate ; mass flow sensor ; Microfluidics ; Mixtures ; Nickel ; nickel electroplated tube ; Pressure dependence ; Pressure drop ; Sensors ; Thickness ; Thin walls ; Tubes ; Wires</subject><ispartof>Journal of microelectromechanical systems, 2022-06, Vol.31 (3), p.408-414</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-1f476b2f7085e3da8bb02085b44f9324bedb531e1abc11d000e2b4c8e9c6ea823</citedby><cites>FETCH-LOGICAL-c339t-1f476b2f7085e3da8bb02085b44f9324bedb531e1abc11d000e2b4c8e9c6ea823</cites><orcidid>0000-0002-6676-1991 ; 0000-0001-5571-739X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9723504$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9723504$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yariesbouei, Mahdieh</creatorcontrib><creatorcontrib>Sanders, Remco G. P.</creatorcontrib><creatorcontrib>Moazzenzade, Taghi</creatorcontrib><creatorcontrib>Wiegerink, Remco J.</creatorcontrib><creatorcontrib>Lotters, Joost C.</creatorcontrib><title>Free Suspended Thin-Walled Nickel Electroplated Tubes for Microfluidic Density and Mass Flow Sensors</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description><![CDATA[In this paper, a novel fabrication method is proposed for microfluidic tubes with a large diameter, circular cross-section, and thin wall. These properties make the tubes especially suitable for density sensors and Coriolis mass flow sensors, because of the resulting low tube mass, low-pressure drop, and low pressure-dependence of the tube shape. A demonstrator sensor was fabricated and the first measurement results of fluid density and mass flow are presented. The low-cost fabrication method is based on electroplating technology and results in tubes with a near-perfect circular cross-section. Diameters ranging from 120 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> to 1 mm and wall thicknesses from <inline-formula> <tex-math notation="LaTeX">8~\mu \text{m} </tex-math></inline-formula> to 60 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> have been achieved. For the demonstrator sensor presented in this paper a freely suspended tube was realized with a total length of 37 mm, a diameter of 600 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, and a wall thickness of 20 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>. Density measurements were performed using various gases, liquids, and liquid mixtures at 21°C to 23°C lab temperature. The accuracy of the measured densities of gases such as nitrogen, argon, and helium is 5%. For liquids including DI water, isopropyl alcohol (IPA), and their various mixtures an accuracy of 0.5% was obtained. Preliminary mass flow rate measurements were performed with water and isopropyl alcohol up to 30 g/h with less than 30 mbar pressure drop thanks to the large tube diameter. [2021-0179]]]></description><subject>Argon</subject><subject>Cross-sections</subject><subject>Cylindrical tube</subject><subject>Density</subject><subject>Density measurement</subject><subject>density sensor</subject><subject>Diameters</subject><subject>Electrochemical deposition</subject><subject>Electron tubes</subject><subject>Electroplating</subject><subject>Fabrication</subject><subject>Flow control</subject><subject>Isopropanol</subject><subject>Liquids</subject><subject>Low pressure</subject><subject>Mass flow rate</subject><subject>mass flow sensor</subject><subject>Microfluidics</subject><subject>Mixtures</subject><subject>Nickel</subject><subject>nickel electroplated tube</subject><subject>Pressure dependence</subject><subject>Pressure drop</subject><subject>Sensors</subject><subject>Thickness</subject><subject>Thin walls</subject><subject>Tubes</subject><subject>Wires</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhCMEEqXwB-BiiXOKX4mTI4KWhxo4tIij5cdGpJgk2IlQ_z0urTjtaDUzu_qS5JLgGSG4vHmu5tVqRjGlM0Z4mTN6lExIyUmKSVYcR40zkQqSidPkLIQNxoTzIp8kduEB0GoMPbQWLFp_NG36rpyL-qUxn-DQ3IEZfNc7NewMo4aA6s6jqjG-q93Y2Mage2hDM2yRai2qVAho4boftIrbzofz5KRWLsDFYU6Tt8V8ffeYLl8fnu5ul6lhrBxSUnORa1oLXGTArCq0xjRqzXldMso1WJ0xAkRpQ4jFGAPV3BRQmhxUQdk0ud739r77HiEMctONvo0nJc1FrBI549FF9674fggeatn75kv5rSRY7mjKP5pyR1MeaMbQ1T7UAMB_oBSUZZizX6v2cS8</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Yariesbouei, Mahdieh</creator><creator>Sanders, Remco G. P.</creator><creator>Moazzenzade, Taghi</creator><creator>Wiegerink, Remco J.</creator><creator>Lotters, Joost C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6676-1991</orcidid><orcidid>https://orcid.org/0000-0001-5571-739X</orcidid></search><sort><creationdate>20220601</creationdate><title>Free Suspended Thin-Walled Nickel Electroplated Tubes for Microfluidic Density and Mass Flow Sensors</title><author>Yariesbouei, Mahdieh ; Sanders, Remco G. P. ; Moazzenzade, Taghi ; Wiegerink, Remco J. ; Lotters, Joost C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-1f476b2f7085e3da8bb02085b44f9324bedb531e1abc11d000e2b4c8e9c6ea823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Argon</topic><topic>Cross-sections</topic><topic>Cylindrical tube</topic><topic>Density</topic><topic>Density measurement</topic><topic>density sensor</topic><topic>Diameters</topic><topic>Electrochemical deposition</topic><topic>Electron tubes</topic><topic>Electroplating</topic><topic>Fabrication</topic><topic>Flow control</topic><topic>Isopropanol</topic><topic>Liquids</topic><topic>Low pressure</topic><topic>Mass flow rate</topic><topic>mass flow sensor</topic><topic>Microfluidics</topic><topic>Mixtures</topic><topic>Nickel</topic><topic>nickel electroplated tube</topic><topic>Pressure dependence</topic><topic>Pressure drop</topic><topic>Sensors</topic><topic>Thickness</topic><topic>Thin walls</topic><topic>Tubes</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yariesbouei, Mahdieh</creatorcontrib><creatorcontrib>Sanders, Remco G. P.</creatorcontrib><creatorcontrib>Moazzenzade, Taghi</creatorcontrib><creatorcontrib>Wiegerink, Remco J.</creatorcontrib><creatorcontrib>Lotters, Joost C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yariesbouei, Mahdieh</au><au>Sanders, Remco G. P.</au><au>Moazzenzade, Taghi</au><au>Wiegerink, Remco J.</au><au>Lotters, Joost C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free Suspended Thin-Walled Nickel Electroplated Tubes for Microfluidic Density and Mass Flow Sensors</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>31</volume><issue>3</issue><spage>408</spage><epage>414</epage><pages>408-414</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract><![CDATA[In this paper, a novel fabrication method is proposed for microfluidic tubes with a large diameter, circular cross-section, and thin wall. These properties make the tubes especially suitable for density sensors and Coriolis mass flow sensors, because of the resulting low tube mass, low-pressure drop, and low pressure-dependence of the tube shape. A demonstrator sensor was fabricated and the first measurement results of fluid density and mass flow are presented. The low-cost fabrication method is based on electroplating technology and results in tubes with a near-perfect circular cross-section. Diameters ranging from 120 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> to 1 mm and wall thicknesses from <inline-formula> <tex-math notation="LaTeX">8~\mu \text{m} </tex-math></inline-formula> to 60 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> have been achieved. For the demonstrator sensor presented in this paper a freely suspended tube was realized with a total length of 37 mm, a diameter of 600 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, and a wall thickness of 20 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>. Density measurements were performed using various gases, liquids, and liquid mixtures at 21°C to 23°C lab temperature. The accuracy of the measured densities of gases such as nitrogen, argon, and helium is 5%. For liquids including DI water, isopropyl alcohol (IPA), and their various mixtures an accuracy of 0.5% was obtained. Preliminary mass flow rate measurements were performed with water and isopropyl alcohol up to 30 g/h with less than 30 mbar pressure drop thanks to the large tube diameter. [2021-0179]]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2022.3149632</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6676-1991</orcidid><orcidid>https://orcid.org/0000-0001-5571-739X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2022-06, Vol.31 (3), p.408-414
issn 1057-7157
1941-0158
language eng
recordid cdi_proquest_journals_2672087634
source IEEE Electronic Library (IEL)
subjects Argon
Cross-sections
Cylindrical tube
Density
Density measurement
density sensor
Diameters
Electrochemical deposition
Electron tubes
Electroplating
Fabrication
Flow control
Isopropanol
Liquids
Low pressure
Mass flow rate
mass flow sensor
Microfluidics
Mixtures
Nickel
nickel electroplated tube
Pressure dependence
Pressure drop
Sensors
Thickness
Thin walls
Tubes
Wires
title Free Suspended Thin-Walled Nickel Electroplated Tubes for Microfluidic Density and Mass Flow Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20Suspended%20Thin-Walled%20Nickel%20Electroplated%20Tubes%20for%20Microfluidic%20Density%20and%20Mass%20Flow%20Sensors&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Yariesbouei,%20Mahdieh&rft.date=2022-06-01&rft.volume=31&rft.issue=3&rft.spage=408&rft.epage=414&rft.pages=408-414&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2022.3149632&rft_dat=%3Cproquest_RIE%3E2672087634%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672087634&rft_id=info:pmid/&rft_ieee_id=9723504&rfr_iscdi=true