Free Suspended Thin-Walled Nickel Electroplated Tubes for Microfluidic Density and Mass Flow Sensors
In this paper, a novel fabrication method is proposed for microfluidic tubes with a large diameter, circular cross-section, and thin wall. These properties make the tubes especially suitable for density sensors and Coriolis mass flow sensors, because of the resulting low tube mass, low-pressure drop...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2022-06, Vol.31 (3), p.408-414 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | 3 |
container_start_page | 408 |
container_title | Journal of microelectromechanical systems |
container_volume | 31 |
creator | Yariesbouei, Mahdieh Sanders, Remco G. P. Moazzenzade, Taghi Wiegerink, Remco J. Lotters, Joost C. |
description | In this paper, a novel fabrication method is proposed for microfluidic tubes with a large diameter, circular cross-section, and thin wall. These properties make the tubes especially suitable for density sensors and Coriolis mass flow sensors, because of the resulting low tube mass, low-pressure drop, and low pressure-dependence of the tube shape. A demonstrator sensor was fabricated and the first measurement results of fluid density and mass flow are presented. The low-cost fabrication method is based on electroplating technology and results in tubes with a near-perfect circular cross-section. Diameters ranging from 120 \mu \text{m} to 1 mm and wall thicknesses from 8~\mu \text{m} to 60 \mu \text{m} have been achieved. For the demonstrator sensor presented in this paper a freely suspended tube was realized with a total length of 37 mm, a diameter of 600 \mu \text{m} , and a wall thickness of 20 \mu \text{m} . Density measurements were performed using various gases, liquids, and liquid mixtures at 21°C to 23°C lab temperature. The accuracy of the measured densities of gases such as nitrogen, argon, and helium is 5%. For liquids including DI water, isopropyl alcohol (IPA), and their various mixtures an accuracy of 0.5% was obtained. Preliminary mass flow rate measurements were performed with water and isopropyl alcohol up to 30 g/h with less than 30 mbar pressure drop thanks to the large tube diameter. [2021-0179] |
doi_str_mv | 10.1109/JMEMS.2022.3149632 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2672087634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9723504</ieee_id><sourcerecordid>2672087634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-1f476b2f7085e3da8bb02085b44f9324bedb531e1abc11d000e2b4c8e9c6ea823</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhCMEEqXwB-BiiXOKX4mTI4KWhxo4tIij5cdGpJgk2IlQ_z0urTjtaDUzu_qS5JLgGSG4vHmu5tVqRjGlM0Z4mTN6lExIyUmKSVYcR40zkQqSidPkLIQNxoTzIp8kduEB0GoMPbQWLFp_NG36rpyL-qUxn-DQ3IEZfNc7NewMo4aA6s6jqjG-q93Y2Mage2hDM2yRai2qVAho4boftIrbzofz5KRWLsDFYU6Tt8V8ffeYLl8fnu5ul6lhrBxSUnORa1oLXGTArCq0xjRqzXldMso1WJ0xAkRpQ4jFGAPV3BRQmhxUQdk0ud739r77HiEMctONvo0nJc1FrBI549FF9674fggeatn75kv5rSRY7mjKP5pyR1MeaMbQ1T7UAMB_oBSUZZizX6v2cS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672087634</pqid></control><display><type>article</type><title>Free Suspended Thin-Walled Nickel Electroplated Tubes for Microfluidic Density and Mass Flow Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Yariesbouei, Mahdieh ; Sanders, Remco G. P. ; Moazzenzade, Taghi ; Wiegerink, Remco J. ; Lotters, Joost C.</creator><creatorcontrib>Yariesbouei, Mahdieh ; Sanders, Remco G. P. ; Moazzenzade, Taghi ; Wiegerink, Remco J. ; Lotters, Joost C.</creatorcontrib><description><![CDATA[In this paper, a novel fabrication method is proposed for microfluidic tubes with a large diameter, circular cross-section, and thin wall. These properties make the tubes especially suitable for density sensors and Coriolis mass flow sensors, because of the resulting low tube mass, low-pressure drop, and low pressure-dependence of the tube shape. A demonstrator sensor was fabricated and the first measurement results of fluid density and mass flow are presented. The low-cost fabrication method is based on electroplating technology and results in tubes with a near-perfect circular cross-section. Diameters ranging from 120 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> to 1 mm and wall thicknesses from <inline-formula> <tex-math notation="LaTeX">8~\mu \text{m} </tex-math></inline-formula> to 60 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> have been achieved. For the demonstrator sensor presented in this paper a freely suspended tube was realized with a total length of 37 mm, a diameter of 600 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, and a wall thickness of 20 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>. Density measurements were performed using various gases, liquids, and liquid mixtures at 21°C to 23°C lab temperature. The accuracy of the measured densities of gases such as nitrogen, argon, and helium is 5%. For liquids including DI water, isopropyl alcohol (IPA), and their various mixtures an accuracy of 0.5% was obtained. Preliminary mass flow rate measurements were performed with water and isopropyl alcohol up to 30 g/h with less than 30 mbar pressure drop thanks to the large tube diameter. [2021-0179]]]></description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2022.3149632</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Argon ; Cross-sections ; Cylindrical tube ; Density ; Density measurement ; density sensor ; Diameters ; Electrochemical deposition ; Electron tubes ; Electroplating ; Fabrication ; Flow control ; Isopropanol ; Liquids ; Low pressure ; Mass flow rate ; mass flow sensor ; Microfluidics ; Mixtures ; Nickel ; nickel electroplated tube ; Pressure dependence ; Pressure drop ; Sensors ; Thickness ; Thin walls ; Tubes ; Wires</subject><ispartof>Journal of microelectromechanical systems, 2022-06, Vol.31 (3), p.408-414</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-1f476b2f7085e3da8bb02085b44f9324bedb531e1abc11d000e2b4c8e9c6ea823</citedby><cites>FETCH-LOGICAL-c339t-1f476b2f7085e3da8bb02085b44f9324bedb531e1abc11d000e2b4c8e9c6ea823</cites><orcidid>0000-0002-6676-1991 ; 0000-0001-5571-739X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9723504$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9723504$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yariesbouei, Mahdieh</creatorcontrib><creatorcontrib>Sanders, Remco G. P.</creatorcontrib><creatorcontrib>Moazzenzade, Taghi</creatorcontrib><creatorcontrib>Wiegerink, Remco J.</creatorcontrib><creatorcontrib>Lotters, Joost C.</creatorcontrib><title>Free Suspended Thin-Walled Nickel Electroplated Tubes for Microfluidic Density and Mass Flow Sensors</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description><![CDATA[In this paper, a novel fabrication method is proposed for microfluidic tubes with a large diameter, circular cross-section, and thin wall. These properties make the tubes especially suitable for density sensors and Coriolis mass flow sensors, because of the resulting low tube mass, low-pressure drop, and low pressure-dependence of the tube shape. A demonstrator sensor was fabricated and the first measurement results of fluid density and mass flow are presented. The low-cost fabrication method is based on electroplating technology and results in tubes with a near-perfect circular cross-section. Diameters ranging from 120 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> to 1 mm and wall thicknesses from <inline-formula> <tex-math notation="LaTeX">8~\mu \text{m} </tex-math></inline-formula> to 60 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> have been achieved. For the demonstrator sensor presented in this paper a freely suspended tube was realized with a total length of 37 mm, a diameter of 600 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, and a wall thickness of 20 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>. Density measurements were performed using various gases, liquids, and liquid mixtures at 21°C to 23°C lab temperature. The accuracy of the measured densities of gases such as nitrogen, argon, and helium is 5%. For liquids including DI water, isopropyl alcohol (IPA), and their various mixtures an accuracy of 0.5% was obtained. Preliminary mass flow rate measurements were performed with water and isopropyl alcohol up to 30 g/h with less than 30 mbar pressure drop thanks to the large tube diameter. [2021-0179]]]></description><subject>Argon</subject><subject>Cross-sections</subject><subject>Cylindrical tube</subject><subject>Density</subject><subject>Density measurement</subject><subject>density sensor</subject><subject>Diameters</subject><subject>Electrochemical deposition</subject><subject>Electron tubes</subject><subject>Electroplating</subject><subject>Fabrication</subject><subject>Flow control</subject><subject>Isopropanol</subject><subject>Liquids</subject><subject>Low pressure</subject><subject>Mass flow rate</subject><subject>mass flow sensor</subject><subject>Microfluidics</subject><subject>Mixtures</subject><subject>Nickel</subject><subject>nickel electroplated tube</subject><subject>Pressure dependence</subject><subject>Pressure drop</subject><subject>Sensors</subject><subject>Thickness</subject><subject>Thin walls</subject><subject>Tubes</subject><subject>Wires</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhCMEEqXwB-BiiXOKX4mTI4KWhxo4tIij5cdGpJgk2IlQ_z0urTjtaDUzu_qS5JLgGSG4vHmu5tVqRjGlM0Z4mTN6lExIyUmKSVYcR40zkQqSidPkLIQNxoTzIp8kduEB0GoMPbQWLFp_NG36rpyL-qUxn-DQ3IEZfNc7NewMo4aA6s6jqjG-q93Y2Mage2hDM2yRai2qVAho4boftIrbzofz5KRWLsDFYU6Tt8V8ffeYLl8fnu5ul6lhrBxSUnORa1oLXGTArCq0xjRqzXldMso1WJ0xAkRpQ4jFGAPV3BRQmhxUQdk0ud739r77HiEMctONvo0nJc1FrBI549FF9674fggeatn75kv5rSRY7mjKP5pyR1MeaMbQ1T7UAMB_oBSUZZizX6v2cS8</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Yariesbouei, Mahdieh</creator><creator>Sanders, Remco G. P.</creator><creator>Moazzenzade, Taghi</creator><creator>Wiegerink, Remco J.</creator><creator>Lotters, Joost C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6676-1991</orcidid><orcidid>https://orcid.org/0000-0001-5571-739X</orcidid></search><sort><creationdate>20220601</creationdate><title>Free Suspended Thin-Walled Nickel Electroplated Tubes for Microfluidic Density and Mass Flow Sensors</title><author>Yariesbouei, Mahdieh ; Sanders, Remco G. P. ; Moazzenzade, Taghi ; Wiegerink, Remco J. ; Lotters, Joost C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-1f476b2f7085e3da8bb02085b44f9324bedb531e1abc11d000e2b4c8e9c6ea823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Argon</topic><topic>Cross-sections</topic><topic>Cylindrical tube</topic><topic>Density</topic><topic>Density measurement</topic><topic>density sensor</topic><topic>Diameters</topic><topic>Electrochemical deposition</topic><topic>Electron tubes</topic><topic>Electroplating</topic><topic>Fabrication</topic><topic>Flow control</topic><topic>Isopropanol</topic><topic>Liquids</topic><topic>Low pressure</topic><topic>Mass flow rate</topic><topic>mass flow sensor</topic><topic>Microfluidics</topic><topic>Mixtures</topic><topic>Nickel</topic><topic>nickel electroplated tube</topic><topic>Pressure dependence</topic><topic>Pressure drop</topic><topic>Sensors</topic><topic>Thickness</topic><topic>Thin walls</topic><topic>Tubes</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yariesbouei, Mahdieh</creatorcontrib><creatorcontrib>Sanders, Remco G. P.</creatorcontrib><creatorcontrib>Moazzenzade, Taghi</creatorcontrib><creatorcontrib>Wiegerink, Remco J.</creatorcontrib><creatorcontrib>Lotters, Joost C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yariesbouei, Mahdieh</au><au>Sanders, Remco G. P.</au><au>Moazzenzade, Taghi</au><au>Wiegerink, Remco J.</au><au>Lotters, Joost C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free Suspended Thin-Walled Nickel Electroplated Tubes for Microfluidic Density and Mass Flow Sensors</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>31</volume><issue>3</issue><spage>408</spage><epage>414</epage><pages>408-414</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract><![CDATA[In this paper, a novel fabrication method is proposed for microfluidic tubes with a large diameter, circular cross-section, and thin wall. These properties make the tubes especially suitable for density sensors and Coriolis mass flow sensors, because of the resulting low tube mass, low-pressure drop, and low pressure-dependence of the tube shape. A demonstrator sensor was fabricated and the first measurement results of fluid density and mass flow are presented. The low-cost fabrication method is based on electroplating technology and results in tubes with a near-perfect circular cross-section. Diameters ranging from 120 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> to 1 mm and wall thicknesses from <inline-formula> <tex-math notation="LaTeX">8~\mu \text{m} </tex-math></inline-formula> to 60 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> have been achieved. For the demonstrator sensor presented in this paper a freely suspended tube was realized with a total length of 37 mm, a diameter of 600 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, and a wall thickness of 20 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>. Density measurements were performed using various gases, liquids, and liquid mixtures at 21°C to 23°C lab temperature. The accuracy of the measured densities of gases such as nitrogen, argon, and helium is 5%. For liquids including DI water, isopropyl alcohol (IPA), and their various mixtures an accuracy of 0.5% was obtained. Preliminary mass flow rate measurements were performed with water and isopropyl alcohol up to 30 g/h with less than 30 mbar pressure drop thanks to the large tube diameter. [2021-0179]]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2022.3149632</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6676-1991</orcidid><orcidid>https://orcid.org/0000-0001-5571-739X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2022-06, Vol.31 (3), p.408-414 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_proquest_journals_2672087634 |
source | IEEE Electronic Library (IEL) |
subjects | Argon Cross-sections Cylindrical tube Density Density measurement density sensor Diameters Electrochemical deposition Electron tubes Electroplating Fabrication Flow control Isopropanol Liquids Low pressure Mass flow rate mass flow sensor Microfluidics Mixtures Nickel nickel electroplated tube Pressure dependence Pressure drop Sensors Thickness Thin walls Tubes Wires |
title | Free Suspended Thin-Walled Nickel Electroplated Tubes for Microfluidic Density and Mass Flow Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20Suspended%20Thin-Walled%20Nickel%20Electroplated%20Tubes%20for%20Microfluidic%20Density%20and%20Mass%20Flow%20Sensors&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Yariesbouei,%20Mahdieh&rft.date=2022-06-01&rft.volume=31&rft.issue=3&rft.spage=408&rft.epage=414&rft.pages=408-414&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2022.3149632&rft_dat=%3Cproquest_RIE%3E2672087634%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672087634&rft_id=info:pmid/&rft_ieee_id=9723504&rfr_iscdi=true |