Empirical Model for the Description of Weld Seam Geometry in Coaxial Laser Hot-Wire Deposition Welding Processes with Different Steel Wires

Claddings are used to protect areas of components that are exposed to particular chemical, physical or tribological stresses. The aim when developing a cladding process is to achieve a cladding with low waviness in order to reduce the amount of machining required. Computational models and FEA simula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lasers in Manufacturing and Materials Processing 2022-06, Vol.9 (2), p.193-213
Hauptverfasser: Budde, Laura, Biester, Kai, Huse, Michael, Lammers, Marius, Hermsdorf, Jörg, Overmeyer, Ludger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 2
container_start_page 193
container_title Lasers in Manufacturing and Materials Processing
container_volume 9
creator Budde, Laura
Biester, Kai
Huse, Michael
Lammers, Marius
Hermsdorf, Jörg
Overmeyer, Ludger
description Claddings are used to protect areas of components that are exposed to particular chemical, physical or tribological stresses. The aim when developing a cladding process is to achieve a cladding with low waviness in order to reduce the amount of machining required. Computational models and FEA simulations can be used to determine process parameters for claddings with low rework including a prediction of the height and width of a single weld seam aswell as the development of welding strategies. In this paper empirical models describing the geometry of single weld seams on a substrate manufactured with a coaxial laser hot-wire cladding process are investigated for three steel wire materials and different welding parameters. The coordinates of surface points of the weld seams were detected using a laser scanning microscope and post-processed by a self-created script. In order to describe the cross sectional shape of the weld seams, the parameters of parabolic, cosinusiodal or circular arc model functions are derived from the surface data using a fitting algorithm. For the tested wire materials, an effect of the wire material on the shape of the weld seam was not observed. The investigations also show that regardless of the varied welding parameter set or wire material, a circular model function appears to be the most suitable model shape for describing the cross sectional weld seam geometry in coaxial laser metal deposition with hot-wire. The regression residua using a circular arc model function ranged from 18.9  μ m to 34.6  μ m, which indicates a good approximation.
doi_str_mv 10.1007/s40516-022-00170-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2672016588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707194638</galeid><sourcerecordid>A707194638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247w-c86f637bc5645a33786ae7f258471c23d05b61ad674fbbb35e8f24c367dee64e3</originalsourceid><addsrcrecordid>eNp90U9r2zAYBnAzOlhp-wV2EvTsVP8sOceQZM0go4Nu5Chk-VWiYluepJL2M-xLT67Ldhs6SIjnp1fwFMVnghcEY3kXOa6IKDGlJcZE4vL8obikZClKSZm8-Humy0_FTYxPGGNKOKacXRa_t_3ogjO6Q998Cx2yPqB0ArSBaIIbk_MD8hYdoGvRI-ge3YPvIYVX5Aa09vrFZbrXEQLa-VQeXJjs6KN7o5NzwxF9D95AjBDR2aUT2jhrIcCQ0GOCPHVi8br4aHUX4eZ9vyp-ftn-WO_K_cP91_VqXxrK5bk0tbCCycZUgleaMVkLDdLSquaSGMpaXDWC6FZIbpumYRXUlnLDhGwBBAd2VdzO747B_3qGmNSTfw5DHqmokBQTUdV1Ti3m1FF3oNxgfQra5NVC74wfwLp8v5JYkiUXbAJ0Bib4GANYNQbX6_CqCFZTUWouSuWi1FtR6pwRm1HM4eEI4d9f_qP-AMBYlvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672016588</pqid></control><display><type>article</type><title>Empirical Model for the Description of Weld Seam Geometry in Coaxial Laser Hot-Wire Deposition Welding Processes with Different Steel Wires</title><source>SpringerNature Journals</source><creator>Budde, Laura ; Biester, Kai ; Huse, Michael ; Lammers, Marius ; Hermsdorf, Jörg ; Overmeyer, Ludger</creator><creatorcontrib>Budde, Laura ; Biester, Kai ; Huse, Michael ; Lammers, Marius ; Hermsdorf, Jörg ; Overmeyer, Ludger</creatorcontrib><description>Claddings are used to protect areas of components that are exposed to particular chemical, physical or tribological stresses. The aim when developing a cladding process is to achieve a cladding with low waviness in order to reduce the amount of machining required. Computational models and FEA simulations can be used to determine process parameters for claddings with low rework including a prediction of the height and width of a single weld seam aswell as the development of welding strategies. In this paper empirical models describing the geometry of single weld seams on a substrate manufactured with a coaxial laser hot-wire cladding process are investigated for three steel wire materials and different welding parameters. The coordinates of surface points of the weld seams were detected using a laser scanning microscope and post-processed by a self-created script. In order to describe the cross sectional shape of the weld seams, the parameters of parabolic, cosinusiodal or circular arc model functions are derived from the surface data using a fitting algorithm. For the tested wire materials, an effect of the wire material on the shape of the weld seam was not observed. The investigations also show that regardless of the varied welding parameter set or wire material, a circular model function appears to be the most suitable model shape for describing the cross sectional weld seam geometry in coaxial laser metal deposition with hot-wire. The regression residua using a circular arc model function ranged from 18.9  μ m to 34.6  μ m, which indicates a good approximation.</description><identifier>ISSN: 2196-7229</identifier><identifier>EISSN: 2196-7237</identifier><identifier>DOI: 10.1007/s40516-022-00170-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Arc deposition ; Arc seam welding ; Building materials ; Engineering ; Finite element method ; Geometry ; Industrial and Production Engineering ; Laser applications ; Laser beam cladding ; Laser beam welding ; Laser deposition ; Lasers ; Machines ; Machining ; Manufacturing ; Mathematical models ; Process parameters ; Processes ; Seams ; Steel wire ; Substrates ; Surfaces and Interfaces ; Thin Films ; Tribology ; Waviness ; Welding ; Welding parameters ; Wire</subject><ispartof>Lasers in Manufacturing and Materials Processing, 2022-06, Vol.9 (2), p.193-213</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247w-c86f637bc5645a33786ae7f258471c23d05b61ad674fbbb35e8f24c367dee64e3</citedby><cites>FETCH-LOGICAL-c247w-c86f637bc5645a33786ae7f258471c23d05b61ad674fbbb35e8f24c367dee64e3</cites><orcidid>0000-0002-0168-3363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40516-022-00170-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40516-022-00170-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Budde, Laura</creatorcontrib><creatorcontrib>Biester, Kai</creatorcontrib><creatorcontrib>Huse, Michael</creatorcontrib><creatorcontrib>Lammers, Marius</creatorcontrib><creatorcontrib>Hermsdorf, Jörg</creatorcontrib><creatorcontrib>Overmeyer, Ludger</creatorcontrib><title>Empirical Model for the Description of Weld Seam Geometry in Coaxial Laser Hot-Wire Deposition Welding Processes with Different Steel Wires</title><title>Lasers in Manufacturing and Materials Processing</title><addtitle>Lasers Manuf. Mater. Process</addtitle><description>Claddings are used to protect areas of components that are exposed to particular chemical, physical or tribological stresses. The aim when developing a cladding process is to achieve a cladding with low waviness in order to reduce the amount of machining required. Computational models and FEA simulations can be used to determine process parameters for claddings with low rework including a prediction of the height and width of a single weld seam aswell as the development of welding strategies. In this paper empirical models describing the geometry of single weld seams on a substrate manufactured with a coaxial laser hot-wire cladding process are investigated for three steel wire materials and different welding parameters. The coordinates of surface points of the weld seams were detected using a laser scanning microscope and post-processed by a self-created script. In order to describe the cross sectional shape of the weld seams, the parameters of parabolic, cosinusiodal or circular arc model functions are derived from the surface data using a fitting algorithm. For the tested wire materials, an effect of the wire material on the shape of the weld seam was not observed. The investigations also show that regardless of the varied welding parameter set or wire material, a circular model function appears to be the most suitable model shape for describing the cross sectional weld seam geometry in coaxial laser metal deposition with hot-wire. The regression residua using a circular arc model function ranged from 18.9  μ m to 34.6  μ m, which indicates a good approximation.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Arc deposition</subject><subject>Arc seam welding</subject><subject>Building materials</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Industrial and Production Engineering</subject><subject>Laser applications</subject><subject>Laser beam cladding</subject><subject>Laser beam welding</subject><subject>Laser deposition</subject><subject>Lasers</subject><subject>Machines</subject><subject>Machining</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Process parameters</subject><subject>Processes</subject><subject>Seams</subject><subject>Steel wire</subject><subject>Substrates</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Waviness</subject><subject>Welding</subject><subject>Welding parameters</subject><subject>Wire</subject><issn>2196-7229</issn><issn>2196-7237</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp90U9r2zAYBnAzOlhp-wV2EvTsVP8sOceQZM0go4Nu5Chk-VWiYluepJL2M-xLT67Ldhs6SIjnp1fwFMVnghcEY3kXOa6IKDGlJcZE4vL8obikZClKSZm8-Humy0_FTYxPGGNKOKacXRa_t_3ogjO6Q998Cx2yPqB0ArSBaIIbk_MD8hYdoGvRI-ge3YPvIYVX5Aa09vrFZbrXEQLa-VQeXJjs6KN7o5NzwxF9D95AjBDR2aUT2jhrIcCQ0GOCPHVi8br4aHUX4eZ9vyp-ftn-WO_K_cP91_VqXxrK5bk0tbCCycZUgleaMVkLDdLSquaSGMpaXDWC6FZIbpumYRXUlnLDhGwBBAd2VdzO747B_3qGmNSTfw5DHqmokBQTUdV1Ti3m1FF3oNxgfQra5NVC74wfwLp8v5JYkiUXbAJ0Bib4GANYNQbX6_CqCFZTUWouSuWi1FtR6pwRm1HM4eEI4d9f_qP-AMBYlvQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Budde, Laura</creator><creator>Biester, Kai</creator><creator>Huse, Michael</creator><creator>Lammers, Marius</creator><creator>Hermsdorf, Jörg</creator><creator>Overmeyer, Ludger</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0002-0168-3363</orcidid></search><sort><creationdate>20220601</creationdate><title>Empirical Model for the Description of Weld Seam Geometry in Coaxial Laser Hot-Wire Deposition Welding Processes with Different Steel Wires</title><author>Budde, Laura ; Biester, Kai ; Huse, Michael ; Lammers, Marius ; Hermsdorf, Jörg ; Overmeyer, Ludger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247w-c86f637bc5645a33786ae7f258471c23d05b61ad674fbbb35e8f24c367dee64e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Arc deposition</topic><topic>Arc seam welding</topic><topic>Building materials</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Industrial and Production Engineering</topic><topic>Laser applications</topic><topic>Laser beam cladding</topic><topic>Laser beam welding</topic><topic>Laser deposition</topic><topic>Lasers</topic><topic>Machines</topic><topic>Machining</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Process parameters</topic><topic>Processes</topic><topic>Seams</topic><topic>Steel wire</topic><topic>Substrates</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Waviness</topic><topic>Welding</topic><topic>Welding parameters</topic><topic>Wire</topic><toplevel>online_resources</toplevel><creatorcontrib>Budde, Laura</creatorcontrib><creatorcontrib>Biester, Kai</creatorcontrib><creatorcontrib>Huse, Michael</creatorcontrib><creatorcontrib>Lammers, Marius</creatorcontrib><creatorcontrib>Hermsdorf, Jörg</creatorcontrib><creatorcontrib>Overmeyer, Ludger</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>Lasers in Manufacturing and Materials Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budde, Laura</au><au>Biester, Kai</au><au>Huse, Michael</au><au>Lammers, Marius</au><au>Hermsdorf, Jörg</au><au>Overmeyer, Ludger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Model for the Description of Weld Seam Geometry in Coaxial Laser Hot-Wire Deposition Welding Processes with Different Steel Wires</atitle><jtitle>Lasers in Manufacturing and Materials Processing</jtitle><stitle>Lasers Manuf. Mater. Process</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>9</volume><issue>2</issue><spage>193</spage><epage>213</epage><pages>193-213</pages><issn>2196-7229</issn><eissn>2196-7237</eissn><abstract>Claddings are used to protect areas of components that are exposed to particular chemical, physical or tribological stresses. The aim when developing a cladding process is to achieve a cladding with low waviness in order to reduce the amount of machining required. Computational models and FEA simulations can be used to determine process parameters for claddings with low rework including a prediction of the height and width of a single weld seam aswell as the development of welding strategies. In this paper empirical models describing the geometry of single weld seams on a substrate manufactured with a coaxial laser hot-wire cladding process are investigated for three steel wire materials and different welding parameters. The coordinates of surface points of the weld seams were detected using a laser scanning microscope and post-processed by a self-created script. In order to describe the cross sectional shape of the weld seams, the parameters of parabolic, cosinusiodal or circular arc model functions are derived from the surface data using a fitting algorithm. For the tested wire materials, an effect of the wire material on the shape of the weld seam was not observed. The investigations also show that regardless of the varied welding parameter set or wire material, a circular model function appears to be the most suitable model shape for describing the cross sectional weld seam geometry in coaxial laser metal deposition with hot-wire. The regression residua using a circular arc model function ranged from 18.9  μ m to 34.6  μ m, which indicates a good approximation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40516-022-00170-w</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-0168-3363</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-7229
ispartof Lasers in Manufacturing and Materials Processing, 2022-06, Vol.9 (2), p.193-213
issn 2196-7229
2196-7237
language eng
recordid cdi_proquest_journals_2672016588
source SpringerNature Journals
subjects Algorithms
Analysis
Arc deposition
Arc seam welding
Building materials
Engineering
Finite element method
Geometry
Industrial and Production Engineering
Laser applications
Laser beam cladding
Laser beam welding
Laser deposition
Lasers
Machines
Machining
Manufacturing
Mathematical models
Process parameters
Processes
Seams
Steel wire
Substrates
Surfaces and Interfaces
Thin Films
Tribology
Waviness
Welding
Welding parameters
Wire
title Empirical Model for the Description of Weld Seam Geometry in Coaxial Laser Hot-Wire Deposition Welding Processes with Different Steel Wires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T00%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Model%20for%20the%20Description%20of%20Weld%20Seam%20Geometry%20in%20Coaxial%20Laser%20Hot-Wire%20Deposition%20Welding%20Processes%20with%20Different%20Steel%20Wires&rft.jtitle=Lasers%20in%20Manufacturing%20and%20Materials%20Processing&rft.au=Budde,%20Laura&rft.date=2022-06-01&rft.volume=9&rft.issue=2&rft.spage=193&rft.epage=213&rft.pages=193-213&rft.issn=2196-7229&rft.eissn=2196-7237&rft_id=info:doi/10.1007/s40516-022-00170-w&rft_dat=%3Cgale_proqu%3EA707194638%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672016588&rft_id=info:pmid/&rft_galeid=A707194638&rfr_iscdi=true