On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes
Since almost twenty years, modified Patankar–Runge–Kutta (MPRK) methods have proven to be efficient and robust numerical schemes that preserve positivity and conservativity of the production-destruction system irrespectively of the time step size chosen. Due to these advantageous properties they are...
Gespeichert in:
Veröffentlicht in: | ESAIM. Mathematical modelling and numerical analysis 2022-05, Vol.56 (3), p.1053-1080 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1080 |
---|---|
container_issue | 3 |
container_start_page | 1053 |
container_title | ESAIM. Mathematical modelling and numerical analysis |
container_volume | 56 |
creator | Izgin, Thomas Kopecz, Stefan Meister, Andreas |
description | Since almost twenty years, modified Patankar–Runge–Kutta (MPRK) methods have proven to be efficient and robust numerical schemes that preserve positivity and conservativity of the production-destruction system irrespectively of the time step size chosen. Due to these advantageous properties they are used for a wide variety of applications. Nevertheless, until now, an analytic investigation of the stability of MPRK schemes is still missing, since the usual approach by means of Dahlquist’s equation is not feasible. Therefore, we consider a positive and conservative 2D test problem and provide statements usable for a stability analysis of general positive and conservative time integrator schemes based on the center manifold theory. We use this approach to investigate the Lyapunov stability of the second order MPRK22(
α
) and MPRK22ncs(
α
) schemes. We prove that MPRK22(
α
) schemes are unconditionally stable and derive the stability regions of MPRK22ncs(
α
) schemes. Finally, numerical experiments are presented, which confirm the theoretical results. |
doi_str_mv | 10.1051/m2an/2022031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671972904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671972904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-62d434ab56c91235e308365e85598d5595a08ecc540d0f6c5ce92af46a2b2ef63</originalsourceid><addsrcrecordid>eNotkEtOwzAQhiMEEhV0xwEssSXUdmw3WaKKl6hUhGAdTZxJMTR2sJ1K3XEBVtyQk5A-NvOPRt_MSF-SXDB6zahkk5aDnXDKOc3YUTLiORXplDNxvO05T6e5oKfJOARTUUkLJQqpRsnPwpL5BrreujUJESqzMnFDXEM6F0w0ayRga6KdDejXsBtE0yIxNuLSQ3Q-7AjoupXRA-AsiY4EHFZq4nyNnrSuNo3BmjxDBPsJ_u_796W3SxzyqY8RSNDv2GI4T04aWAUcH_Isebu7fZ09pPPF_ePsZp7qjLKYKl6LTEAllS4YzyRmNM-UxFzKIq-HIoHmqLUUtKaN0lJjwaERCnjFsVHZWXK5v9t599VjiOWH670dXpZcTVkx5QUVA3W1p7R3IXhsys6bFvymZLTcOi-3zsuD8-wfhWh5LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671972904</pqid></control><display><type>article</type><title>On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes</title><source>Alma/SFX Local Collection</source><creator>Izgin, Thomas ; Kopecz, Stefan ; Meister, Andreas</creator><creatorcontrib>Izgin, Thomas ; Kopecz, Stefan ; Meister, Andreas</creatorcontrib><description>Since almost twenty years, modified Patankar–Runge–Kutta (MPRK) methods have proven to be efficient and robust numerical schemes that preserve positivity and conservativity of the production-destruction system irrespectively of the time step size chosen. Due to these advantageous properties they are used for a wide variety of applications. Nevertheless, until now, an analytic investigation of the stability of MPRK schemes is still missing, since the usual approach by means of Dahlquist’s equation is not feasible. Therefore, we consider a positive and conservative 2D test problem and provide statements usable for a stability analysis of general positive and conservative time integrator schemes based on the center manifold theory. We use this approach to investigate the Lyapunov stability of the second order MPRK22(
α
) and MPRK22ncs(
α
) schemes. We prove that MPRK22(
α
) schemes are unconditionally stable and derive the stability regions of MPRK22ncs(
α
) schemes. Finally, numerical experiments are presented, which confirm the theoretical results.</description><identifier>ISSN: 2822-7840</identifier><identifier>EISSN: 2804-7214</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2022031</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Eigenvalues ; Integrators ; Partial differential equations ; Robustness (mathematics) ; Runge-Kutta method ; Stability analysis ; Turbulence models</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2022-05, Vol.56 (3), p.1053-1080</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-62d434ab56c91235e308365e85598d5595a08ecc540d0f6c5ce92af46a2b2ef63</citedby><cites>FETCH-LOGICAL-c301t-62d434ab56c91235e308365e85598d5595a08ecc540d0f6c5ce92af46a2b2ef63</cites><orcidid>0000-0003-3235-210X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Izgin, Thomas</creatorcontrib><creatorcontrib>Kopecz, Stefan</creatorcontrib><creatorcontrib>Meister, Andreas</creatorcontrib><title>On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>Since almost twenty years, modified Patankar–Runge–Kutta (MPRK) methods have proven to be efficient and robust numerical schemes that preserve positivity and conservativity of the production-destruction system irrespectively of the time step size chosen. Due to these advantageous properties they are used for a wide variety of applications. Nevertheless, until now, an analytic investigation of the stability of MPRK schemes is still missing, since the usual approach by means of Dahlquist’s equation is not feasible. Therefore, we consider a positive and conservative 2D test problem and provide statements usable for a stability analysis of general positive and conservative time integrator schemes based on the center manifold theory. We use this approach to investigate the Lyapunov stability of the second order MPRK22(
α
) and MPRK22ncs(
α
) schemes. We prove that MPRK22(
α
) schemes are unconditionally stable and derive the stability regions of MPRK22ncs(
α
) schemes. Finally, numerical experiments are presented, which confirm the theoretical results.</description><subject>Eigenvalues</subject><subject>Integrators</subject><subject>Partial differential equations</subject><subject>Robustness (mathematics)</subject><subject>Runge-Kutta method</subject><subject>Stability analysis</subject><subject>Turbulence models</subject><issn>2822-7840</issn><issn>2804-7214</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAQhiMEEhV0xwEssSXUdmw3WaKKl6hUhGAdTZxJMTR2sJ1K3XEBVtyQk5A-NvOPRt_MSF-SXDB6zahkk5aDnXDKOc3YUTLiORXplDNxvO05T6e5oKfJOARTUUkLJQqpRsnPwpL5BrreujUJESqzMnFDXEM6F0w0ayRga6KdDejXsBtE0yIxNuLSQ3Q-7AjoupXRA-AsiY4EHFZq4nyNnrSuNo3BmjxDBPsJ_u_796W3SxzyqY8RSNDv2GI4T04aWAUcH_Isebu7fZ09pPPF_ePsZp7qjLKYKl6LTEAllS4YzyRmNM-UxFzKIq-HIoHmqLUUtKaN0lJjwaERCnjFsVHZWXK5v9t599VjiOWH670dXpZcTVkx5QUVA3W1p7R3IXhsys6bFvymZLTcOi-3zsuD8-wfhWh5LQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Izgin, Thomas</creator><creator>Kopecz, Stefan</creator><creator>Meister, Andreas</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3235-210X</orcidid></search><sort><creationdate>20220501</creationdate><title>On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes</title><author>Izgin, Thomas ; Kopecz, Stefan ; Meister, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-62d434ab56c91235e308365e85598d5595a08ecc540d0f6c5ce92af46a2b2ef63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Eigenvalues</topic><topic>Integrators</topic><topic>Partial differential equations</topic><topic>Robustness (mathematics)</topic><topic>Runge-Kutta method</topic><topic>Stability analysis</topic><topic>Turbulence models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izgin, Thomas</creatorcontrib><creatorcontrib>Kopecz, Stefan</creatorcontrib><creatorcontrib>Meister, Andreas</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izgin, Thomas</au><au>Kopecz, Stefan</au><au>Meister, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>56</volume><issue>3</issue><spage>1053</spage><epage>1080</epage><pages>1053-1080</pages><issn>2822-7840</issn><eissn>2804-7214</eissn><eissn>1290-3841</eissn><abstract>Since almost twenty years, modified Patankar–Runge–Kutta (MPRK) methods have proven to be efficient and robust numerical schemes that preserve positivity and conservativity of the production-destruction system irrespectively of the time step size chosen. Due to these advantageous properties they are used for a wide variety of applications. Nevertheless, until now, an analytic investigation of the stability of MPRK schemes is still missing, since the usual approach by means of Dahlquist’s equation is not feasible. Therefore, we consider a positive and conservative 2D test problem and provide statements usable for a stability analysis of general positive and conservative time integrator schemes based on the center manifold theory. We use this approach to investigate the Lyapunov stability of the second order MPRK22(
α
) and MPRK22ncs(
α
) schemes. We prove that MPRK22(
α
) schemes are unconditionally stable and derive the stability regions of MPRK22ncs(
α
) schemes. Finally, numerical experiments are presented, which confirm the theoretical results.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2022031</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-3235-210X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2822-7840 |
ispartof | ESAIM. Mathematical modelling and numerical analysis, 2022-05, Vol.56 (3), p.1053-1080 |
issn | 2822-7840 2804-7214 1290-3841 |
language | eng |
recordid | cdi_proquest_journals_2671972904 |
source | Alma/SFX Local Collection |
subjects | Eigenvalues Integrators Partial differential equations Robustness (mathematics) Runge-Kutta method Stability analysis Turbulence models |
title | On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Lyapunov%20stability%20of%20positive%20and%20conservative%20time%20integrators%20and%20application%20to%20second%20order%20modified%20Patankar%E2%80%93Runge%E2%80%93Kutta%20schemes&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Izgin,%20Thomas&rft.date=2022-05-01&rft.volume=56&rft.issue=3&rft.spage=1053&rft.epage=1080&rft.pages=1053-1080&rft.issn=2822-7840&rft.eissn=2804-7214&rft_id=info:doi/10.1051/m2an/2022031&rft_dat=%3Cproquest_cross%3E2671972904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671972904&rft_id=info:pmid/&rfr_iscdi=true |