On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes

Since almost twenty years, modified Patankar–Runge–Kutta (MPRK) methods have proven to be efficient and robust numerical schemes that preserve positivity and conservativity of the production-destruction system irrespectively of the time step size chosen. Due to these advantageous properties they are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2022-05, Vol.56 (3), p.1053-1080
Hauptverfasser: Izgin, Thomas, Kopecz, Stefan, Meister, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1080
container_issue 3
container_start_page 1053
container_title ESAIM. Mathematical modelling and numerical analysis
container_volume 56
creator Izgin, Thomas
Kopecz, Stefan
Meister, Andreas
description Since almost twenty years, modified Patankar–Runge–Kutta (MPRK) methods have proven to be efficient and robust numerical schemes that preserve positivity and conservativity of the production-destruction system irrespectively of the time step size chosen. Due to these advantageous properties they are used for a wide variety of applications. Nevertheless, until now, an analytic investigation of the stability of MPRK schemes is still missing, since the usual approach by means of Dahlquist’s equation is not feasible. Therefore, we consider a positive and conservative 2D test problem and provide statements usable for a stability analysis of general positive and conservative time integrator schemes based on the center manifold theory. We use this approach to investigate the Lyapunov stability of the second order MPRK22( α ) and MPRK22ncs( α ) schemes. We prove that MPRK22( α ) schemes are unconditionally stable and derive the stability regions of MPRK22ncs( α ) schemes. Finally, numerical experiments are presented, which confirm the theoretical results.
doi_str_mv 10.1051/m2an/2022031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671972904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671972904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-62d434ab56c91235e308365e85598d5595a08ecc540d0f6c5ce92af46a2b2ef63</originalsourceid><addsrcrecordid>eNotkEtOwzAQhiMEEhV0xwEssSXUdmw3WaKKl6hUhGAdTZxJMTR2sJ1K3XEBVtyQk5A-NvOPRt_MSF-SXDB6zahkk5aDnXDKOc3YUTLiORXplDNxvO05T6e5oKfJOARTUUkLJQqpRsnPwpL5BrreujUJESqzMnFDXEM6F0w0ayRga6KdDejXsBtE0yIxNuLSQ3Q-7AjoupXRA-AsiY4EHFZq4nyNnrSuNo3BmjxDBPsJ_u_796W3SxzyqY8RSNDv2GI4T04aWAUcH_Isebu7fZ09pPPF_ePsZp7qjLKYKl6LTEAllS4YzyRmNM-UxFzKIq-HIoHmqLUUtKaN0lJjwaERCnjFsVHZWXK5v9t599VjiOWH670dXpZcTVkx5QUVA3W1p7R3IXhsys6bFvymZLTcOi-3zsuD8-wfhWh5LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671972904</pqid></control><display><type>article</type><title>On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes</title><source>Alma/SFX Local Collection</source><creator>Izgin, Thomas ; Kopecz, Stefan ; Meister, Andreas</creator><creatorcontrib>Izgin, Thomas ; Kopecz, Stefan ; Meister, Andreas</creatorcontrib><description>Since almost twenty years, modified Patankar–Runge–Kutta (MPRK) methods have proven to be efficient and robust numerical schemes that preserve positivity and conservativity of the production-destruction system irrespectively of the time step size chosen. Due to these advantageous properties they are used for a wide variety of applications. Nevertheless, until now, an analytic investigation of the stability of MPRK schemes is still missing, since the usual approach by means of Dahlquist’s equation is not feasible. Therefore, we consider a positive and conservative 2D test problem and provide statements usable for a stability analysis of general positive and conservative time integrator schemes based on the center manifold theory. We use this approach to investigate the Lyapunov stability of the second order MPRK22( α ) and MPRK22ncs( α ) schemes. We prove that MPRK22( α ) schemes are unconditionally stable and derive the stability regions of MPRK22ncs( α ) schemes. Finally, numerical experiments are presented, which confirm the theoretical results.</description><identifier>ISSN: 2822-7840</identifier><identifier>EISSN: 2804-7214</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2022031</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Eigenvalues ; Integrators ; Partial differential equations ; Robustness (mathematics) ; Runge-Kutta method ; Stability analysis ; Turbulence models</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2022-05, Vol.56 (3), p.1053-1080</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-62d434ab56c91235e308365e85598d5595a08ecc540d0f6c5ce92af46a2b2ef63</citedby><cites>FETCH-LOGICAL-c301t-62d434ab56c91235e308365e85598d5595a08ecc540d0f6c5ce92af46a2b2ef63</cites><orcidid>0000-0003-3235-210X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Izgin, Thomas</creatorcontrib><creatorcontrib>Kopecz, Stefan</creatorcontrib><creatorcontrib>Meister, Andreas</creatorcontrib><title>On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>Since almost twenty years, modified Patankar–Runge–Kutta (MPRK) methods have proven to be efficient and robust numerical schemes that preserve positivity and conservativity of the production-destruction system irrespectively of the time step size chosen. Due to these advantageous properties they are used for a wide variety of applications. Nevertheless, until now, an analytic investigation of the stability of MPRK schemes is still missing, since the usual approach by means of Dahlquist’s equation is not feasible. Therefore, we consider a positive and conservative 2D test problem and provide statements usable for a stability analysis of general positive and conservative time integrator schemes based on the center manifold theory. We use this approach to investigate the Lyapunov stability of the second order MPRK22( α ) and MPRK22ncs( α ) schemes. We prove that MPRK22( α ) schemes are unconditionally stable and derive the stability regions of MPRK22ncs( α ) schemes. Finally, numerical experiments are presented, which confirm the theoretical results.</description><subject>Eigenvalues</subject><subject>Integrators</subject><subject>Partial differential equations</subject><subject>Robustness (mathematics)</subject><subject>Runge-Kutta method</subject><subject>Stability analysis</subject><subject>Turbulence models</subject><issn>2822-7840</issn><issn>2804-7214</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAQhiMEEhV0xwEssSXUdmw3WaKKl6hUhGAdTZxJMTR2sJ1K3XEBVtyQk5A-NvOPRt_MSF-SXDB6zahkk5aDnXDKOc3YUTLiORXplDNxvO05T6e5oKfJOARTUUkLJQqpRsnPwpL5BrreujUJESqzMnFDXEM6F0w0ayRga6KdDejXsBtE0yIxNuLSQ3Q-7AjoupXRA-AsiY4EHFZq4nyNnrSuNo3BmjxDBPsJ_u_796W3SxzyqY8RSNDv2GI4T04aWAUcH_Isebu7fZ09pPPF_ePsZp7qjLKYKl6LTEAllS4YzyRmNM-UxFzKIq-HIoHmqLUUtKaN0lJjwaERCnjFsVHZWXK5v9t599VjiOWH670dXpZcTVkx5QUVA3W1p7R3IXhsys6bFvymZLTcOi-3zsuD8-wfhWh5LQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Izgin, Thomas</creator><creator>Kopecz, Stefan</creator><creator>Meister, Andreas</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3235-210X</orcidid></search><sort><creationdate>20220501</creationdate><title>On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes</title><author>Izgin, Thomas ; Kopecz, Stefan ; Meister, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-62d434ab56c91235e308365e85598d5595a08ecc540d0f6c5ce92af46a2b2ef63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Eigenvalues</topic><topic>Integrators</topic><topic>Partial differential equations</topic><topic>Robustness (mathematics)</topic><topic>Runge-Kutta method</topic><topic>Stability analysis</topic><topic>Turbulence models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izgin, Thomas</creatorcontrib><creatorcontrib>Kopecz, Stefan</creatorcontrib><creatorcontrib>Meister, Andreas</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izgin, Thomas</au><au>Kopecz, Stefan</au><au>Meister, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>56</volume><issue>3</issue><spage>1053</spage><epage>1080</epage><pages>1053-1080</pages><issn>2822-7840</issn><eissn>2804-7214</eissn><eissn>1290-3841</eissn><abstract>Since almost twenty years, modified Patankar–Runge–Kutta (MPRK) methods have proven to be efficient and robust numerical schemes that preserve positivity and conservativity of the production-destruction system irrespectively of the time step size chosen. Due to these advantageous properties they are used for a wide variety of applications. Nevertheless, until now, an analytic investigation of the stability of MPRK schemes is still missing, since the usual approach by means of Dahlquist’s equation is not feasible. Therefore, we consider a positive and conservative 2D test problem and provide statements usable for a stability analysis of general positive and conservative time integrator schemes based on the center manifold theory. We use this approach to investigate the Lyapunov stability of the second order MPRK22( α ) and MPRK22ncs( α ) schemes. We prove that MPRK22( α ) schemes are unconditionally stable and derive the stability regions of MPRK22ncs( α ) schemes. Finally, numerical experiments are presented, which confirm the theoretical results.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2022031</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-3235-210X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2822-7840
ispartof ESAIM. Mathematical modelling and numerical analysis, 2022-05, Vol.56 (3), p.1053-1080
issn 2822-7840
2804-7214
1290-3841
language eng
recordid cdi_proquest_journals_2671972904
source Alma/SFX Local Collection
subjects Eigenvalues
Integrators
Partial differential equations
Robustness (mathematics)
Runge-Kutta method
Stability analysis
Turbulence models
title On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Lyapunov%20stability%20of%20positive%20and%20conservative%20time%20integrators%20and%20application%20to%20second%20order%20modified%20Patankar%E2%80%93Runge%E2%80%93Kutta%20schemes&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Izgin,%20Thomas&rft.date=2022-05-01&rft.volume=56&rft.issue=3&rft.spage=1053&rft.epage=1080&rft.pages=1053-1080&rft.issn=2822-7840&rft.eissn=2804-7214&rft_id=info:doi/10.1051/m2an/2022031&rft_dat=%3Cproquest_cross%3E2671972904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671972904&rft_id=info:pmid/&rfr_iscdi=true