POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES
The paper sets forth in detail categorically-algebraic or catalg foundations for the operations of taking the image and preimage of (fuzzy) sets called forward and backward powerset operators. Motivated by an open question of S. E. Rodabaugh, we construct a monad on the category of sets, the algebra...
Gespeichert in:
Veröffentlicht in: | Iranian journal of fuzzy systems (Online) 2011-06, Vol.8 (2), p.1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Iranian journal of fuzzy systems (Online) |
container_volume | 8 |
creator | Solovyov, Sergey A |
description | The paper sets forth in detail categorically-algebraic or catalg foundations for the operations of taking the image and preimage of (fuzzy) sets called forward and backward powerset operators. Motivated by an open question of S. E. Rodabaugh, we construct a monad on the category of sets, the algebras of which generate the fixed-basis forward powerset operator of L. A. Zadeh. On the next step, we provide a direct lift of the backward powerset operator using the notion of categorical biproduct. The obtained framework is readily extended to the variable-basis case, justifying the powerset theories currently popular in the fuzzy community. At the end of the paper, our general variety-based setting postulates the requirements, under which a convenient variety-based powerset theory can be developed, suitable for employment in all areas of fuzzy mathematics dealing with fuzzy powersets, including fuzzy algebra, logic and topology. |
doi_str_mv | 10.22111/ijfs.2011.259 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2671868258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671868258</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-ec223ad9f44f5e29dd10f3ff6a108b75b1dc680b3c98a102805eab25bf2bcded3</originalsourceid><addsrcrecordid>eNotj8FrgzAYxcPYYNL1urOws12-LyZGdhIXW0GaopGxXooxBlrG2tX2_69jO73Hj8d7PEKegS4QAeB1f_DjAinAAnl6RwIUiYhixuJ7EkDCeEQFjx_JfBz3lk5AcuAiIG8b_aHqRplQb1SdGV2HhW7X75kp9bqZfB3mmcmqZVi02-1n-Js0K6XrUjVP5MF3X-Mw_9cZaQtl8lVU6WWZZ1V0Asku0dAjss6lPo49HzB1Dqhn3osOqLQJt-B6IallfSonhJLyobPIrUfbu8GxGXn56z2djz_XYbzsDsfr-Xua3E0vQQqJXLIbykZF5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671868258</pqid></control><display><type>article</type><title>POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Solovyov, Sergey A</creator><creatorcontrib>Solovyov, Sergey A</creatorcontrib><description>The paper sets forth in detail categorically-algebraic or catalg foundations for the operations of taking the image and preimage of (fuzzy) sets called forward and backward powerset operators. Motivated by an open question of S. E. Rodabaugh, we construct a monad on the category of sets, the algebras of which generate the fixed-basis forward powerset operator of L. A. Zadeh. On the next step, we provide a direct lift of the backward powerset operator using the notion of categorical biproduct. The obtained framework is readily extended to the variable-basis case, justifying the powerset theories currently popular in the fuzzy community. At the end of the paper, our general variety-based setting postulates the requirements, under which a convenient variety-based powerset theory can be developed, suitable for employment in all areas of fuzzy mathematics dealing with fuzzy powersets, including fuzzy algebra, logic and topology.</description><identifier>ISSN: 1735-0654</identifier><identifier>EISSN: 2676-4334</identifier><identifier>DOI: 10.22111/ijfs.2011.259</identifier><language>eng</language><publisher>Zahedan: University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</publisher><subject>Fuzzy sets</subject><ispartof>Iranian journal of fuzzy systems (Online), 2011-06, Vol.8 (2), p.1</ispartof><rights>2011. This work is published under https://creativecommons.org/licenses/by-nc/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Solovyov, Sergey A</creatorcontrib><title>POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES</title><title>Iranian journal of fuzzy systems (Online)</title><description>The paper sets forth in detail categorically-algebraic or catalg foundations for the operations of taking the image and preimage of (fuzzy) sets called forward and backward powerset operators. Motivated by an open question of S. E. Rodabaugh, we construct a monad on the category of sets, the algebras of which generate the fixed-basis forward powerset operator of L. A. Zadeh. On the next step, we provide a direct lift of the backward powerset operator using the notion of categorical biproduct. The obtained framework is readily extended to the variable-basis case, justifying the powerset theories currently popular in the fuzzy community. At the end of the paper, our general variety-based setting postulates the requirements, under which a convenient variety-based powerset theory can be developed, suitable for employment in all areas of fuzzy mathematics dealing with fuzzy powersets, including fuzzy algebra, logic and topology.</description><subject>Fuzzy sets</subject><issn>1735-0654</issn><issn>2676-4334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotj8FrgzAYxcPYYNL1urOws12-LyZGdhIXW0GaopGxXooxBlrG2tX2_69jO73Hj8d7PEKegS4QAeB1f_DjAinAAnl6RwIUiYhixuJ7EkDCeEQFjx_JfBz3lk5AcuAiIG8b_aHqRplQb1SdGV2HhW7X75kp9bqZfB3mmcmqZVi02-1n-Js0K6XrUjVP5MF3X-Mw_9cZaQtl8lVU6WWZZ1V0Asku0dAjss6lPo49HzB1Dqhn3osOqLQJt-B6IallfSonhJLyobPIrUfbu8GxGXn56z2djz_XYbzsDsfr-Xua3E0vQQqJXLIbykZF5g</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Solovyov, Sergey A</creator><general>University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</general><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110601</creationdate><title>POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES</title><author>Solovyov, Sergey A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-ec223ad9f44f5e29dd10f3ff6a108b75b1dc680b3c98a102805eab25bf2bcded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Fuzzy sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solovyov, Sergey A</creatorcontrib><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Iranian journal of fuzzy systems (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solovyov, Sergey A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES</atitle><jtitle>Iranian journal of fuzzy systems (Online)</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>8</volume><issue>2</issue><spage>1</spage><pages>1-</pages><issn>1735-0654</issn><eissn>2676-4334</eissn><abstract>The paper sets forth in detail categorically-algebraic or catalg foundations for the operations of taking the image and preimage of (fuzzy) sets called forward and backward powerset operators. Motivated by an open question of S. E. Rodabaugh, we construct a monad on the category of sets, the algebras of which generate the fixed-basis forward powerset operator of L. A. Zadeh. On the next step, we provide a direct lift of the backward powerset operator using the notion of categorical biproduct. The obtained framework is readily extended to the variable-basis case, justifying the powerset theories currently popular in the fuzzy community. At the end of the paper, our general variety-based setting postulates the requirements, under which a convenient variety-based powerset theory can be developed, suitable for employment in all areas of fuzzy mathematics dealing with fuzzy powersets, including fuzzy algebra, logic and topology.</abstract><cop>Zahedan</cop><pub>University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</pub><doi>10.22111/ijfs.2011.259</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1735-0654 |
ispartof | Iranian journal of fuzzy systems (Online), 2011-06, Vol.8 (2), p.1 |
issn | 1735-0654 2676-4334 |
language | eng |
recordid | cdi_proquest_journals_2671868258 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Fuzzy sets |
title | POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=POWERSET%20OPERATOR%20FOUNDATIONS%20FOR%20CATALG%20FUZZY%20SET%20THEORIES&rft.jtitle=Iranian%20journal%20of%20fuzzy%20systems%20(Online)&rft.au=Solovyov,%20Sergey%20A&rft.date=2011-06-01&rft.volume=8&rft.issue=2&rft.spage=1&rft.pages=1-&rft.issn=1735-0654&rft.eissn=2676-4334&rft_id=info:doi/10.22111/ijfs.2011.259&rft_dat=%3Cproquest%3E2671868258%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671868258&rft_id=info:pmid/&rfr_iscdi=true |