POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES

The paper sets forth in detail categorically-algebraic or catalg foundations for the operations of taking the image and preimage of (fuzzy) sets called forward and backward powerset operators. Motivated by an open question of S. E. Rodabaugh, we construct a monad on the category of sets, the algebra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of fuzzy systems (Online) 2011-06, Vol.8 (2), p.1
1. Verfasser: Solovyov, Sergey A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 1
container_title Iranian journal of fuzzy systems (Online)
container_volume 8
creator Solovyov, Sergey A
description The paper sets forth in detail categorically-algebraic or catalg foundations for the operations of taking the image and preimage of (fuzzy) sets called forward and backward powerset operators. Motivated by an open question of S. E. Rodabaugh, we construct a monad on the category of sets, the algebras of which generate the fixed-basis forward powerset operator of L. A. Zadeh. On the next step, we provide a direct lift of the backward powerset operator using the notion of categorical biproduct. The obtained framework is readily extended to the variable-basis case, justifying the powerset theories currently popular in the fuzzy community. At the end of the paper, our general variety-based setting postulates the requirements, under which a convenient variety-based powerset theory can be developed, suitable for employment in all areas of fuzzy mathematics dealing with fuzzy powersets, including fuzzy algebra, logic and topology.
doi_str_mv 10.22111/ijfs.2011.259
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2671868258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671868258</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-ec223ad9f44f5e29dd10f3ff6a108b75b1dc680b3c98a102805eab25bf2bcded3</originalsourceid><addsrcrecordid>eNotj8FrgzAYxcPYYNL1urOws12-LyZGdhIXW0GaopGxXooxBlrG2tX2_69jO73Hj8d7PEKegS4QAeB1f_DjAinAAnl6RwIUiYhixuJ7EkDCeEQFjx_JfBz3lk5AcuAiIG8b_aHqRplQb1SdGV2HhW7X75kp9bqZfB3mmcmqZVi02-1n-Js0K6XrUjVP5MF3X-Mw_9cZaQtl8lVU6WWZZ1V0Asku0dAjss6lPo49HzB1Dqhn3osOqLQJt-B6IallfSonhJLyobPIrUfbu8GxGXn56z2djz_XYbzsDsfr-Xua3E0vQQqJXLIbykZF5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671868258</pqid></control><display><type>article</type><title>POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Solovyov, Sergey A</creator><creatorcontrib>Solovyov, Sergey A</creatorcontrib><description>The paper sets forth in detail categorically-algebraic or catalg foundations for the operations of taking the image and preimage of (fuzzy) sets called forward and backward powerset operators. Motivated by an open question of S. E. Rodabaugh, we construct a monad on the category of sets, the algebras of which generate the fixed-basis forward powerset operator of L. A. Zadeh. On the next step, we provide a direct lift of the backward powerset operator using the notion of categorical biproduct. The obtained framework is readily extended to the variable-basis case, justifying the powerset theories currently popular in the fuzzy community. At the end of the paper, our general variety-based setting postulates the requirements, under which a convenient variety-based powerset theory can be developed, suitable for employment in all areas of fuzzy mathematics dealing with fuzzy powersets, including fuzzy algebra, logic and topology.</description><identifier>ISSN: 1735-0654</identifier><identifier>EISSN: 2676-4334</identifier><identifier>DOI: 10.22111/ijfs.2011.259</identifier><language>eng</language><publisher>Zahedan: University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</publisher><subject>Fuzzy sets</subject><ispartof>Iranian journal of fuzzy systems (Online), 2011-06, Vol.8 (2), p.1</ispartof><rights>2011. This work is published under https://creativecommons.org/licenses/by-nc/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Solovyov, Sergey A</creatorcontrib><title>POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES</title><title>Iranian journal of fuzzy systems (Online)</title><description>The paper sets forth in detail categorically-algebraic or catalg foundations for the operations of taking the image and preimage of (fuzzy) sets called forward and backward powerset operators. Motivated by an open question of S. E. Rodabaugh, we construct a monad on the category of sets, the algebras of which generate the fixed-basis forward powerset operator of L. A. Zadeh. On the next step, we provide a direct lift of the backward powerset operator using the notion of categorical biproduct. The obtained framework is readily extended to the variable-basis case, justifying the powerset theories currently popular in the fuzzy community. At the end of the paper, our general variety-based setting postulates the requirements, under which a convenient variety-based powerset theory can be developed, suitable for employment in all areas of fuzzy mathematics dealing with fuzzy powersets, including fuzzy algebra, logic and topology.</description><subject>Fuzzy sets</subject><issn>1735-0654</issn><issn>2676-4334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotj8FrgzAYxcPYYNL1urOws12-LyZGdhIXW0GaopGxXooxBlrG2tX2_69jO73Hj8d7PEKegS4QAeB1f_DjAinAAnl6RwIUiYhixuJ7EkDCeEQFjx_JfBz3lk5AcuAiIG8b_aHqRplQb1SdGV2HhW7X75kp9bqZfB3mmcmqZVi02-1n-Js0K6XrUjVP5MF3X-Mw_9cZaQtl8lVU6WWZZ1V0Asku0dAjss6lPo49HzB1Dqhn3osOqLQJt-B6IallfSonhJLyobPIrUfbu8GxGXn56z2djz_XYbzsDsfr-Xua3E0vQQqJXLIbykZF5g</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Solovyov, Sergey A</creator><general>University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</general><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110601</creationdate><title>POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES</title><author>Solovyov, Sergey A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-ec223ad9f44f5e29dd10f3ff6a108b75b1dc680b3c98a102805eab25bf2bcded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Fuzzy sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solovyov, Sergey A</creatorcontrib><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Iranian journal of fuzzy systems (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solovyov, Sergey A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES</atitle><jtitle>Iranian journal of fuzzy systems (Online)</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>8</volume><issue>2</issue><spage>1</spage><pages>1-</pages><issn>1735-0654</issn><eissn>2676-4334</eissn><abstract>The paper sets forth in detail categorically-algebraic or catalg foundations for the operations of taking the image and preimage of (fuzzy) sets called forward and backward powerset operators. Motivated by an open question of S. E. Rodabaugh, we construct a monad on the category of sets, the algebras of which generate the fixed-basis forward powerset operator of L. A. Zadeh. On the next step, we provide a direct lift of the backward powerset operator using the notion of categorical biproduct. The obtained framework is readily extended to the variable-basis case, justifying the powerset theories currently popular in the fuzzy community. At the end of the paper, our general variety-based setting postulates the requirements, under which a convenient variety-based powerset theory can be developed, suitable for employment in all areas of fuzzy mathematics dealing with fuzzy powersets, including fuzzy algebra, logic and topology.</abstract><cop>Zahedan</cop><pub>University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</pub><doi>10.22111/ijfs.2011.259</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1735-0654
ispartof Iranian journal of fuzzy systems (Online), 2011-06, Vol.8 (2), p.1
issn 1735-0654
2676-4334
language eng
recordid cdi_proquest_journals_2671868258
source EZB-FREE-00999 freely available EZB journals
subjects Fuzzy sets
title POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=POWERSET%20OPERATOR%20FOUNDATIONS%20FOR%20CATALG%20FUZZY%20SET%20THEORIES&rft.jtitle=Iranian%20journal%20of%20fuzzy%20systems%20(Online)&rft.au=Solovyov,%20Sergey%20A&rft.date=2011-06-01&rft.volume=8&rft.issue=2&rft.spage=1&rft.pages=1-&rft.issn=1735-0654&rft.eissn=2676-4334&rft_id=info:doi/10.22111/ijfs.2011.259&rft_dat=%3Cproquest%3E2671868258%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671868258&rft_id=info:pmid/&rfr_iscdi=true