Fault-Aware Design and Training to Enhance DNNs Reliability with Zero-Overhead
Deep Neural Networks (DNNs) enable a wide series of technological advancements, ranging from clinical imaging, to predictive industrial maintenance and autonomous driving. However, recent findings indicate that transient hardware faults may corrupt the models prediction dramatically. For instance, t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-05 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cavagnero, Niccolò Fernando Dos Santos Ciccone, Marco Averta, Giuseppe Tommasi, Tatiana Rech, Paolo |
description | Deep Neural Networks (DNNs) enable a wide series of technological advancements, ranging from clinical imaging, to predictive industrial maintenance and autonomous driving. However, recent findings indicate that transient hardware faults may corrupt the models prediction dramatically. For instance, the radiation-induced misprediction probability can be so high to impede a safe deployment of DNNs models at scale, urging the need for efficient and effective hardening solutions. In this work, we propose to tackle the reliability issue both at training and model design time. First, we show that vanilla models are highly affected by transient faults, that can induce a performances drop up to 37%. Hence, we provide three zero-overhead solutions, based on DNN re-design and re-train, that can improve DNNs reliability to transient faults up to one order of magnitude. We complement our work with extensive ablation studies to quantify the gain in performances of each hardening component. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2671811198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671811198</sourcerecordid><originalsourceid>FETCH-proquest_journals_26718111983</originalsourceid><addsrcrecordid>eNqNjrEKwjAUAIMgWLT_8MA50CRW6yja4lRBnFzK08Y2JSSapBb_3g5-gNMNd8NNSMSFYDRbcT4jsfddkiR8veFpKiJSFtjrQHcDOgkH6VVjAE0NF4fKKNNAsJCbFs191GXp4Sy1wpvSKnxgUKGFq3SWnt7StRLrBZk-UHsZ_zgnyyK_7I_06eyrlz5Une2dGVU1LrCMMbbNxH_VF0xyPUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671811198</pqid></control><display><type>article</type><title>Fault-Aware Design and Training to Enhance DNNs Reliability with Zero-Overhead</title><source>Free E- Journals</source><creator>Cavagnero, Niccolò ; Fernando Dos Santos ; Ciccone, Marco ; Averta, Giuseppe ; Tommasi, Tatiana ; Rech, Paolo</creator><creatorcontrib>Cavagnero, Niccolò ; Fernando Dos Santos ; Ciccone, Marco ; Averta, Giuseppe ; Tommasi, Tatiana ; Rech, Paolo</creatorcontrib><description>Deep Neural Networks (DNNs) enable a wide series of technological advancements, ranging from clinical imaging, to predictive industrial maintenance and autonomous driving. However, recent findings indicate that transient hardware faults may corrupt the models prediction dramatically. For instance, the radiation-induced misprediction probability can be so high to impede a safe deployment of DNNs models at scale, urging the need for efficient and effective hardening solutions. In this work, we propose to tackle the reliability issue both at training and model design time. First, we show that vanilla models are highly affected by transient faults, that can induce a performances drop up to 37%. Hence, we provide three zero-overhead solutions, based on DNN re-design and re-train, that can improve DNNs reliability to transient faults up to one order of magnitude. We complement our work with extensive ablation studies to quantify the gain in performances of each hardening component.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ablation ; Artificial neural networks ; Faults ; Hardening ; Network reliability ; Plant maintenance ; Predictive maintenance ; Radiation effects ; Training</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Cavagnero, Niccolò</creatorcontrib><creatorcontrib>Fernando Dos Santos</creatorcontrib><creatorcontrib>Ciccone, Marco</creatorcontrib><creatorcontrib>Averta, Giuseppe</creatorcontrib><creatorcontrib>Tommasi, Tatiana</creatorcontrib><creatorcontrib>Rech, Paolo</creatorcontrib><title>Fault-Aware Design and Training to Enhance DNNs Reliability with Zero-Overhead</title><title>arXiv.org</title><description>Deep Neural Networks (DNNs) enable a wide series of technological advancements, ranging from clinical imaging, to predictive industrial maintenance and autonomous driving. However, recent findings indicate that transient hardware faults may corrupt the models prediction dramatically. For instance, the radiation-induced misprediction probability can be so high to impede a safe deployment of DNNs models at scale, urging the need for efficient and effective hardening solutions. In this work, we propose to tackle the reliability issue both at training and model design time. First, we show that vanilla models are highly affected by transient faults, that can induce a performances drop up to 37%. Hence, we provide three zero-overhead solutions, based on DNN re-design and re-train, that can improve DNNs reliability to transient faults up to one order of magnitude. We complement our work with extensive ablation studies to quantify the gain in performances of each hardening component.</description><subject>Ablation</subject><subject>Artificial neural networks</subject><subject>Faults</subject><subject>Hardening</subject><subject>Network reliability</subject><subject>Plant maintenance</subject><subject>Predictive maintenance</subject><subject>Radiation effects</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjrEKwjAUAIMgWLT_8MA50CRW6yja4lRBnFzK08Y2JSSapBb_3g5-gNMNd8NNSMSFYDRbcT4jsfddkiR8veFpKiJSFtjrQHcDOgkH6VVjAE0NF4fKKNNAsJCbFs191GXp4Sy1wpvSKnxgUKGFq3SWnt7StRLrBZk-UHsZ_zgnyyK_7I_06eyrlz5Une2dGVU1LrCMMbbNxH_VF0xyPUY</recordid><startdate>20220528</startdate><enddate>20220528</enddate><creator>Cavagnero, Niccolò</creator><creator>Fernando Dos Santos</creator><creator>Ciccone, Marco</creator><creator>Averta, Giuseppe</creator><creator>Tommasi, Tatiana</creator><creator>Rech, Paolo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220528</creationdate><title>Fault-Aware Design and Training to Enhance DNNs Reliability with Zero-Overhead</title><author>Cavagnero, Niccolò ; Fernando Dos Santos ; Ciccone, Marco ; Averta, Giuseppe ; Tommasi, Tatiana ; Rech, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26718111983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Artificial neural networks</topic><topic>Faults</topic><topic>Hardening</topic><topic>Network reliability</topic><topic>Plant maintenance</topic><topic>Predictive maintenance</topic><topic>Radiation effects</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Cavagnero, Niccolò</creatorcontrib><creatorcontrib>Fernando Dos Santos</creatorcontrib><creatorcontrib>Ciccone, Marco</creatorcontrib><creatorcontrib>Averta, Giuseppe</creatorcontrib><creatorcontrib>Tommasi, Tatiana</creatorcontrib><creatorcontrib>Rech, Paolo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavagnero, Niccolò</au><au>Fernando Dos Santos</au><au>Ciccone, Marco</au><au>Averta, Giuseppe</au><au>Tommasi, Tatiana</au><au>Rech, Paolo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fault-Aware Design and Training to Enhance DNNs Reliability with Zero-Overhead</atitle><jtitle>arXiv.org</jtitle><date>2022-05-28</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Deep Neural Networks (DNNs) enable a wide series of technological advancements, ranging from clinical imaging, to predictive industrial maintenance and autonomous driving. However, recent findings indicate that transient hardware faults may corrupt the models prediction dramatically. For instance, the radiation-induced misprediction probability can be so high to impede a safe deployment of DNNs models at scale, urging the need for efficient and effective hardening solutions. In this work, we propose to tackle the reliability issue both at training and model design time. First, we show that vanilla models are highly affected by transient faults, that can induce a performances drop up to 37%. Hence, we provide three zero-overhead solutions, based on DNN re-design and re-train, that can improve DNNs reliability to transient faults up to one order of magnitude. We complement our work with extensive ablation studies to quantify the gain in performances of each hardening component.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2671811198 |
source | Free E- Journals |
subjects | Ablation Artificial neural networks Faults Hardening Network reliability Plant maintenance Predictive maintenance Radiation effects Training |
title | Fault-Aware Design and Training to Enhance DNNs Reliability with Zero-Overhead |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fault-Aware%20Design%20and%20Training%20to%20Enhance%20DNNs%20Reliability%20with%20Zero-Overhead&rft.jtitle=arXiv.org&rft.au=Cavagnero,%20Niccol%C3%B2&rft.date=2022-05-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2671811198%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671811198&rft_id=info:pmid/&rfr_iscdi=true |