Finding a Solution to an Optimization Problem and an Application
In this paper, we obtain some best proximity point results on 0-complete partial metric spaces by introducing a new concept of mixed multivalued contraction mapping. Thus, we generalize and extend some important and famous results existing in the literature. To support our results, we present a note...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2022-07, Vol.194 (1), p.121-141 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we obtain some best proximity point results on 0-complete partial metric spaces by introducing a new concept of mixed multivalued contraction mapping. Thus, we generalize and extend some important and famous results existing in the literature. To support our results, we present a noteworthy illustrative and comparative example. Finally, we give some applications of our new best proximity point theorems to homotopy theory as directly unlike homotopy applications existing in the literature. Hence, we prove some best proximity point results for homotopic mappings. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-022-02011-4 |