Single‐Cell Transcriptome Analysis Uncovers Intratumoral Heterogeneity and Underlying Mechanisms for Drug Resistance in Hepatobiliary Tumor Organoids

Molecular heterogeneity of hepatobiliary tumor including intertumoral and intratumoral disparity always leads to drug resistance. Here, seven hepatobiliary tumor organoids are generated to explore heterogeneity and evolution via single‐cell RNA sequencing. HCC272 with high status of epithelia‐mesenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2021-06, Vol.8 (11), p.e2003897-n/a, Article 2003897
Hauptverfasser: Zhao, Yan, Li, Zhi‐Xuan, Zhu, Yan‐Jing, Fu, Jing, Zhao, Xiao‐Fang, Zhang, Ya‐Ni, Wang, Shan, Wu, Jian‐Min, Wang, Kai‐Ting, Wu, Rui, Sui, Cheng‐Jun, Shen, Si‐Yun, Wu, Xuan, Wang, Hong‐Yang, Gao, Dong, Chen, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e2003897
container_title Advanced science
container_volume 8
creator Zhao, Yan
Li, Zhi‐Xuan
Zhu, Yan‐Jing
Fu, Jing
Zhao, Xiao‐Fang
Zhang, Ya‐Ni
Wang, Shan
Wu, Jian‐Min
Wang, Kai‐Ting
Wu, Rui
Sui, Cheng‐Jun
Shen, Si‐Yun
Wu, Xuan
Wang, Hong‐Yang
Gao, Dong
Chen, Lei
description Molecular heterogeneity of hepatobiliary tumor including intertumoral and intratumoral disparity always leads to drug resistance. Here, seven hepatobiliary tumor organoids are generated to explore heterogeneity and evolution via single‐cell RNA sequencing. HCC272 with high status of epithelia‐mesenchymal transition proves broad‐spectrum drug resistance. By examining the expression pattern of cancer stem cells markers (e.g., PROM1, CD44, and EPCAM), it is found that CD44 positive population may render drug resistance in HCC272. UMAP and pseudo‐time analysis identify the intratumoral heterogeneity and distinct evolutionary trajectories, of which catenin beta‐1 (CTNNB1), glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH), and nuclear paraspeckle assembly transcript 1 (NEAT1) advantage expression clusters are commonly shared across hepatobiliary organoids. CellphoneDB analysis further implies that metabolism advantage organoids with enrichment of hypoxia signal upregulate NEAT1 expression in CD44 subgroup and mediate drug resistance that relies on Jak‐STAT pathway. Moreover, metabolism advantage clusters shared in several organoids have similar characteristic genes (GAPDH, NDRG1 (N‐Myc downstream regulated 1), ALDOA, and CA9). The combination of GAPDH and NDRG1 is an independent risk factor and predictor for patient survival. This study delineates heterogeneity of hepatobiliary tumor organoids and proposes that the collaboration of intratumoral heterogenic subpopulations renders malignant phenotypes and drug resistance. The existence of inter‐ and intratumoral heterogeneity is the main cause for tumor drug resistance. Thus, extensive understanding of the underlying mechanism is necessary for developing potential strategy. This study here, for the first time, provides the new understanding for the role of tumor ecosystem involving cell expansion and drug response by applying scRNA‐seq method with tumor organoids.
doi_str_mv 10.1002/advs.202003897
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2671793046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_af892bb5312045cc81f5a93f6e435c7c</doaj_id><sourcerecordid>2671793046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6234-292006001f42e2454dae95f004e47ca86581427438a20fac133ec9ec667b769d3</originalsourceid><addsrcrecordid>eNqNks9r1EAUx4MottRePcqAF6HsOj-TyUUoW7ULlYLdeh0mk5d0lmRmnUlW9uaf4M3_z7_EWXddWg8qBCZkPu_De3nfLHtO8JRgTF_reh2nFFOMmSyLR9kxJaWcMMn543vvR9lpjEuMMRGs4EQ-zY4YJ1jQUhxn32-sazv48fXbDLoOLYJ20QS7GnwP6NzpbhNtRLfO-DWEiOZuCHoYex90hy5hgOBbcGCHDdKuTlwNodskJfoA5k47G_uIGh_QRRhb9BGSbNDOALIula_04CvbWR02aLGVouvQaudtHZ9lTxrdRTjdnyfZ7bu3i9nl5Or6_Xx2fjUxOWV8Qss0fJ5GazgFygWvNZSiwZgDL4yWuZCE04IzqSlutCGMgSnB5HlRFXlZs5NsvvPWXi_VKtg-NaO8turXBx9apcNgTQdKN7KkVSUYoZgLYyRphC5ZkwNnwhQmud7sXKux6qE2sP1Z3QPpwxtn71Tr10oSmR6RBK_2guA_jxAH1dto0l60Az9GRQUrBSU5JQl9-Qe69GNI-0pUXpCiZJjnf6WSC3PCKE7UdEeZ4GMM0BxaJlhtg6a2QVOHoKWCF_cHPeC_Y5WAsx3wBSrfRGMh7fyApSjmjBREJF9aXaLl_9MzO-jBejfzoxtSKd-X2g42_-hbnV98uqGcc_YTL8gB5Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539041320</pqid></control><display><type>article</type><title>Single‐Cell Transcriptome Analysis Uncovers Intratumoral Heterogeneity and Underlying Mechanisms for Drug Resistance in Hepatobiliary Tumor Organoids</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Zhao, Yan ; Li, Zhi‐Xuan ; Zhu, Yan‐Jing ; Fu, Jing ; Zhao, Xiao‐Fang ; Zhang, Ya‐Ni ; Wang, Shan ; Wu, Jian‐Min ; Wang, Kai‐Ting ; Wu, Rui ; Sui, Cheng‐Jun ; Shen, Si‐Yun ; Wu, Xuan ; Wang, Hong‐Yang ; Gao, Dong ; Chen, Lei</creator><creatorcontrib>Zhao, Yan ; Li, Zhi‐Xuan ; Zhu, Yan‐Jing ; Fu, Jing ; Zhao, Xiao‐Fang ; Zhang, Ya‐Ni ; Wang, Shan ; Wu, Jian‐Min ; Wang, Kai‐Ting ; Wu, Rui ; Sui, Cheng‐Jun ; Shen, Si‐Yun ; Wu, Xuan ; Wang, Hong‐Yang ; Gao, Dong ; Chen, Lei</creatorcontrib><description>Molecular heterogeneity of hepatobiliary tumor including intertumoral and intratumoral disparity always leads to drug resistance. Here, seven hepatobiliary tumor organoids are generated to explore heterogeneity and evolution via single‐cell RNA sequencing. HCC272 with high status of epithelia‐mesenchymal transition proves broad‐spectrum drug resistance. By examining the expression pattern of cancer stem cells markers (e.g., PROM1, CD44, and EPCAM), it is found that CD44 positive population may render drug resistance in HCC272. UMAP and pseudo‐time analysis identify the intratumoral heterogeneity and distinct evolutionary trajectories, of which catenin beta‐1 (CTNNB1), glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH), and nuclear paraspeckle assembly transcript 1 (NEAT1) advantage expression clusters are commonly shared across hepatobiliary organoids. CellphoneDB analysis further implies that metabolism advantage organoids with enrichment of hypoxia signal upregulate NEAT1 expression in CD44 subgroup and mediate drug resistance that relies on Jak‐STAT pathway. Moreover, metabolism advantage clusters shared in several organoids have similar characteristic genes (GAPDH, NDRG1 (N‐Myc downstream regulated 1), ALDOA, and CA9). The combination of GAPDH and NDRG1 is an independent risk factor and predictor for patient survival. This study delineates heterogeneity of hepatobiliary tumor organoids and proposes that the collaboration of intratumoral heterogenic subpopulations renders malignant phenotypes and drug resistance. The existence of inter‐ and intratumoral heterogeneity is the main cause for tumor drug resistance. Thus, extensive understanding of the underlying mechanism is necessary for developing potential strategy. This study here, for the first time, provides the new understanding for the role of tumor ecosystem involving cell expansion and drug response by applying scRNA‐seq method with tumor organoids.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202003897</identifier><identifier>PMID: 34105295</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Antigens ; Antigens, Neoplasm - genetics ; beta Catenin - genetics ; Brain cancer ; Carbonic Anhydrase IX - genetics ; Cell cycle ; Cell Cycle Proteins - genetics ; Chemistry ; Chemistry, Multidisciplinary ; Cysts ; Digestive System Diseases - drug therapy ; Digestive System Diseases - genetics ; Digestive System Diseases - pathology ; Drug resistance ; Drug Resistance, Neoplasm - genetics ; Epithelial-Mesenchymal Transition - genetics ; Fructose-Bisphosphate Aldolase - genetics ; Gastrointestinal Neoplasms - drug therapy ; Gastrointestinal Neoplasms - genetics ; Gastrointestinal Neoplasms - pathology ; Gene expression ; Gene Expression Regulation, Neoplastic - genetics ; Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - genetics ; Growth factors ; hepatobiliary tumor organoid ; Humans ; Hyaluronan Receptors - genetics ; Intracellular Signaling Peptides and Proteins - genetics ; Janus Kinases - genetics ; Materials Science ; Materials Science, Multidisciplinary ; Metastasis ; Mutation ; Nanoscience &amp; Nanotechnology ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; Organoids - drug effects ; Organoids - metabolism ; Organoids - pathology ; Patients ; Physical Sciences ; Physiology ; Principal components analysis ; RNA, Long Noncoding - genetics ; RNA-Seq ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Single-Cell Analysis ; STAT Transcription Factors - genetics ; Stem cells ; Technology ; Transcriptome - genetics ; tumor ecosystem ; tumor heterogeneity ; Tumors</subject><ispartof>Advanced science, 2021-06, Vol.8 (11), p.e2003897-n/a, Article 2003897</ispartof><rights>2021 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Advanced Science published by Wiley-VCH GmbH.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>64</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000631715200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c6234-292006001f42e2454dae95f004e47ca86581427438a20fac133ec9ec667b769d3</citedby><cites>FETCH-LOGICAL-c6234-292006001f42e2454dae95f004e47ca86581427438a20fac133ec9ec667b769d3</cites><orcidid>0000-0003-1821-2741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188185/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188185/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,1419,2104,2116,11569,27931,27932,39265,45581,45582,46059,46483,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34105295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Li, Zhi‐Xuan</creatorcontrib><creatorcontrib>Zhu, Yan‐Jing</creatorcontrib><creatorcontrib>Fu, Jing</creatorcontrib><creatorcontrib>Zhao, Xiao‐Fang</creatorcontrib><creatorcontrib>Zhang, Ya‐Ni</creatorcontrib><creatorcontrib>Wang, Shan</creatorcontrib><creatorcontrib>Wu, Jian‐Min</creatorcontrib><creatorcontrib>Wang, Kai‐Ting</creatorcontrib><creatorcontrib>Wu, Rui</creatorcontrib><creatorcontrib>Sui, Cheng‐Jun</creatorcontrib><creatorcontrib>Shen, Si‐Yun</creatorcontrib><creatorcontrib>Wu, Xuan</creatorcontrib><creatorcontrib>Wang, Hong‐Yang</creatorcontrib><creatorcontrib>Gao, Dong</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><title>Single‐Cell Transcriptome Analysis Uncovers Intratumoral Heterogeneity and Underlying Mechanisms for Drug Resistance in Hepatobiliary Tumor Organoids</title><title>Advanced science</title><addtitle>ADV SCI</addtitle><addtitle>Adv Sci (Weinh)</addtitle><description>Molecular heterogeneity of hepatobiliary tumor including intertumoral and intratumoral disparity always leads to drug resistance. Here, seven hepatobiliary tumor organoids are generated to explore heterogeneity and evolution via single‐cell RNA sequencing. HCC272 with high status of epithelia‐mesenchymal transition proves broad‐spectrum drug resistance. By examining the expression pattern of cancer stem cells markers (e.g., PROM1, CD44, and EPCAM), it is found that CD44 positive population may render drug resistance in HCC272. UMAP and pseudo‐time analysis identify the intratumoral heterogeneity and distinct evolutionary trajectories, of which catenin beta‐1 (CTNNB1), glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH), and nuclear paraspeckle assembly transcript 1 (NEAT1) advantage expression clusters are commonly shared across hepatobiliary organoids. CellphoneDB analysis further implies that metabolism advantage organoids with enrichment of hypoxia signal upregulate NEAT1 expression in CD44 subgroup and mediate drug resistance that relies on Jak‐STAT pathway. Moreover, metabolism advantage clusters shared in several organoids have similar characteristic genes (GAPDH, NDRG1 (N‐Myc downstream regulated 1), ALDOA, and CA9). The combination of GAPDH and NDRG1 is an independent risk factor and predictor for patient survival. This study delineates heterogeneity of hepatobiliary tumor organoids and proposes that the collaboration of intratumoral heterogenic subpopulations renders malignant phenotypes and drug resistance. The existence of inter‐ and intratumoral heterogeneity is the main cause for tumor drug resistance. Thus, extensive understanding of the underlying mechanism is necessary for developing potential strategy. This study here, for the first time, provides the new understanding for the role of tumor ecosystem involving cell expansion and drug response by applying scRNA‐seq method with tumor organoids.</description><subject>Antigens</subject><subject>Antigens, Neoplasm - genetics</subject><subject>beta Catenin - genetics</subject><subject>Brain cancer</subject><subject>Carbonic Anhydrase IX - genetics</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Cysts</subject><subject>Digestive System Diseases - drug therapy</subject><subject>Digestive System Diseases - genetics</subject><subject>Digestive System Diseases - pathology</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Epithelial-Mesenchymal Transition - genetics</subject><subject>Fructose-Bisphosphate Aldolase - genetics</subject><subject>Gastrointestinal Neoplasms - drug therapy</subject><subject>Gastrointestinal Neoplasms - genetics</subject><subject>Gastrointestinal Neoplasms - pathology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - genetics</subject><subject>Growth factors</subject><subject>hepatobiliary tumor organoid</subject><subject>Humans</subject><subject>Hyaluronan Receptors - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Janus Kinases - genetics</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metastasis</subject><subject>Mutation</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Organoids - drug effects</subject><subject>Organoids - metabolism</subject><subject>Organoids - pathology</subject><subject>Patients</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Principal components analysis</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA-Seq</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Single-Cell Analysis</subject><subject>STAT Transcription Factors - genetics</subject><subject>Stem cells</subject><subject>Technology</subject><subject>Transcriptome - genetics</subject><subject>tumor ecosystem</subject><subject>tumor heterogeneity</subject><subject>Tumors</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNks9r1EAUx4MottRePcqAF6HsOj-TyUUoW7ULlYLdeh0mk5d0lmRmnUlW9uaf4M3_z7_EWXddWg8qBCZkPu_De3nfLHtO8JRgTF_reh2nFFOMmSyLR9kxJaWcMMn543vvR9lpjEuMMRGs4EQ-zY4YJ1jQUhxn32-sazv48fXbDLoOLYJ20QS7GnwP6NzpbhNtRLfO-DWEiOZuCHoYex90hy5hgOBbcGCHDdKuTlwNodskJfoA5k47G_uIGh_QRRhb9BGSbNDOALIula_04CvbWR02aLGVouvQaudtHZ9lTxrdRTjdnyfZ7bu3i9nl5Or6_Xx2fjUxOWV8Qss0fJ5GazgFygWvNZSiwZgDL4yWuZCE04IzqSlutCGMgSnB5HlRFXlZs5NsvvPWXi_VKtg-NaO8turXBx9apcNgTQdKN7KkVSUYoZgLYyRphC5ZkwNnwhQmud7sXKux6qE2sP1Z3QPpwxtn71Tr10oSmR6RBK_2guA_jxAH1dto0l60Az9GRQUrBSU5JQl9-Qe69GNI-0pUXpCiZJjnf6WSC3PCKE7UdEeZ4GMM0BxaJlhtg6a2QVOHoKWCF_cHPeC_Y5WAsx3wBSrfRGMh7fyApSjmjBREJF9aXaLl_9MzO-jBejfzoxtSKd-X2g42_-hbnV98uqGcc_YTL8gB5Q</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhao, Yan</creator><creator>Li, Zhi‐Xuan</creator><creator>Zhu, Yan‐Jing</creator><creator>Fu, Jing</creator><creator>Zhao, Xiao‐Fang</creator><creator>Zhang, Ya‐Ni</creator><creator>Wang, Shan</creator><creator>Wu, Jian‐Min</creator><creator>Wang, Kai‐Ting</creator><creator>Wu, Rui</creator><creator>Sui, Cheng‐Jun</creator><creator>Shen, Si‐Yun</creator><creator>Wu, Xuan</creator><creator>Wang, Hong‐Yang</creator><creator>Gao, Dong</creator><creator>Chen, Lei</creator><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1821-2741</orcidid></search><sort><creationdate>20210601</creationdate><title>Single‐Cell Transcriptome Analysis Uncovers Intratumoral Heterogeneity and Underlying Mechanisms for Drug Resistance in Hepatobiliary Tumor Organoids</title><author>Zhao, Yan ; Li, Zhi‐Xuan ; Zhu, Yan‐Jing ; Fu, Jing ; Zhao, Xiao‐Fang ; Zhang, Ya‐Ni ; Wang, Shan ; Wu, Jian‐Min ; Wang, Kai‐Ting ; Wu, Rui ; Sui, Cheng‐Jun ; Shen, Si‐Yun ; Wu, Xuan ; Wang, Hong‐Yang ; Gao, Dong ; Chen, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6234-292006001f42e2454dae95f004e47ca86581427438a20fac133ec9ec667b769d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antigens</topic><topic>Antigens, Neoplasm - genetics</topic><topic>beta Catenin - genetics</topic><topic>Brain cancer</topic><topic>Carbonic Anhydrase IX - genetics</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Cysts</topic><topic>Digestive System Diseases - drug therapy</topic><topic>Digestive System Diseases - genetics</topic><topic>Digestive System Diseases - pathology</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Epithelial-Mesenchymal Transition - genetics</topic><topic>Fructose-Bisphosphate Aldolase - genetics</topic><topic>Gastrointestinal Neoplasms - drug therapy</topic><topic>Gastrointestinal Neoplasms - genetics</topic><topic>Gastrointestinal Neoplasms - pathology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - genetics</topic><topic>Growth factors</topic><topic>hepatobiliary tumor organoid</topic><topic>Humans</topic><topic>Hyaluronan Receptors - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Janus Kinases - genetics</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metastasis</topic><topic>Mutation</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Organoids - drug effects</topic><topic>Organoids - metabolism</topic><topic>Organoids - pathology</topic><topic>Patients</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Principal components analysis</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA-Seq</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Single-Cell Analysis</topic><topic>STAT Transcription Factors - genetics</topic><topic>Stem cells</topic><topic>Technology</topic><topic>Transcriptome - genetics</topic><topic>tumor ecosystem</topic><topic>tumor heterogeneity</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Li, Zhi‐Xuan</creatorcontrib><creatorcontrib>Zhu, Yan‐Jing</creatorcontrib><creatorcontrib>Fu, Jing</creatorcontrib><creatorcontrib>Zhao, Xiao‐Fang</creatorcontrib><creatorcontrib>Zhang, Ya‐Ni</creatorcontrib><creatorcontrib>Wang, Shan</creatorcontrib><creatorcontrib>Wu, Jian‐Min</creatorcontrib><creatorcontrib>Wang, Kai‐Ting</creatorcontrib><creatorcontrib>Wu, Rui</creatorcontrib><creatorcontrib>Sui, Cheng‐Jun</creatorcontrib><creatorcontrib>Shen, Si‐Yun</creatorcontrib><creatorcontrib>Wu, Xuan</creatorcontrib><creatorcontrib>Wang, Hong‐Yang</creatorcontrib><creatorcontrib>Gao, Dong</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yan</au><au>Li, Zhi‐Xuan</au><au>Zhu, Yan‐Jing</au><au>Fu, Jing</au><au>Zhao, Xiao‐Fang</au><au>Zhang, Ya‐Ni</au><au>Wang, Shan</au><au>Wu, Jian‐Min</au><au>Wang, Kai‐Ting</au><au>Wu, Rui</au><au>Sui, Cheng‐Jun</au><au>Shen, Si‐Yun</au><au>Wu, Xuan</au><au>Wang, Hong‐Yang</au><au>Gao, Dong</au><au>Chen, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single‐Cell Transcriptome Analysis Uncovers Intratumoral Heterogeneity and Underlying Mechanisms for Drug Resistance in Hepatobiliary Tumor Organoids</atitle><jtitle>Advanced science</jtitle><stitle>ADV SCI</stitle><addtitle>Adv Sci (Weinh)</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>8</volume><issue>11</issue><spage>e2003897</spage><epage>n/a</epage><pages>e2003897-n/a</pages><artnum>2003897</artnum><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Molecular heterogeneity of hepatobiliary tumor including intertumoral and intratumoral disparity always leads to drug resistance. Here, seven hepatobiliary tumor organoids are generated to explore heterogeneity and evolution via single‐cell RNA sequencing. HCC272 with high status of epithelia‐mesenchymal transition proves broad‐spectrum drug resistance. By examining the expression pattern of cancer stem cells markers (e.g., PROM1, CD44, and EPCAM), it is found that CD44 positive population may render drug resistance in HCC272. UMAP and pseudo‐time analysis identify the intratumoral heterogeneity and distinct evolutionary trajectories, of which catenin beta‐1 (CTNNB1), glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH), and nuclear paraspeckle assembly transcript 1 (NEAT1) advantage expression clusters are commonly shared across hepatobiliary organoids. CellphoneDB analysis further implies that metabolism advantage organoids with enrichment of hypoxia signal upregulate NEAT1 expression in CD44 subgroup and mediate drug resistance that relies on Jak‐STAT pathway. Moreover, metabolism advantage clusters shared in several organoids have similar characteristic genes (GAPDH, NDRG1 (N‐Myc downstream regulated 1), ALDOA, and CA9). The combination of GAPDH and NDRG1 is an independent risk factor and predictor for patient survival. This study delineates heterogeneity of hepatobiliary tumor organoids and proposes that the collaboration of intratumoral heterogenic subpopulations renders malignant phenotypes and drug resistance. The existence of inter‐ and intratumoral heterogeneity is the main cause for tumor drug resistance. Thus, extensive understanding of the underlying mechanism is necessary for developing potential strategy. This study here, for the first time, provides the new understanding for the role of tumor ecosystem involving cell expansion and drug response by applying scRNA‐seq method with tumor organoids.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>34105295</pmid><doi>10.1002/advs.202003897</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1821-2741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2021-06, Vol.8 (11), p.e2003897-n/a, Article 2003897
issn 2198-3844
2198-3844
language eng
recordid cdi_proquest_journals_2671793046
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Antigens
Antigens, Neoplasm - genetics
beta Catenin - genetics
Brain cancer
Carbonic Anhydrase IX - genetics
Cell cycle
Cell Cycle Proteins - genetics
Chemistry
Chemistry, Multidisciplinary
Cysts
Digestive System Diseases - drug therapy
Digestive System Diseases - genetics
Digestive System Diseases - pathology
Drug resistance
Drug Resistance, Neoplasm - genetics
Epithelial-Mesenchymal Transition - genetics
Fructose-Bisphosphate Aldolase - genetics
Gastrointestinal Neoplasms - drug therapy
Gastrointestinal Neoplasms - genetics
Gastrointestinal Neoplasms - pathology
Gene expression
Gene Expression Regulation, Neoplastic - genetics
Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - genetics
Growth factors
hepatobiliary tumor organoid
Humans
Hyaluronan Receptors - genetics
Intracellular Signaling Peptides and Proteins - genetics
Janus Kinases - genetics
Materials Science
Materials Science, Multidisciplinary
Metastasis
Mutation
Nanoscience & Nanotechnology
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Organoids - drug effects
Organoids - metabolism
Organoids - pathology
Patients
Physical Sciences
Physiology
Principal components analysis
RNA, Long Noncoding - genetics
RNA-Seq
Science & Technology
Science & Technology - Other Topics
Single-Cell Analysis
STAT Transcription Factors - genetics
Stem cells
Technology
Transcriptome - genetics
tumor ecosystem
tumor heterogeneity
Tumors
title Single‐Cell Transcriptome Analysis Uncovers Intratumoral Heterogeneity and Underlying Mechanisms for Drug Resistance in Hepatobiliary Tumor Organoids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%E2%80%90Cell%20Transcriptome%20Analysis%20Uncovers%20Intratumoral%20Heterogeneity%20and%20Underlying%20Mechanisms%20for%20Drug%20Resistance%20in%20Hepatobiliary%20Tumor%20Organoids&rft.jtitle=Advanced%20science&rft.au=Zhao,%20Yan&rft.date=2021-06-01&rft.volume=8&rft.issue=11&rft.spage=e2003897&rft.epage=n/a&rft.pages=e2003897-n/a&rft.artnum=2003897&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202003897&rft_dat=%3Cproquest_pubme%3E2671793046%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539041320&rft_id=info:pmid/34105295&rft_doaj_id=oai_doaj_org_article_af892bb5312045cc81f5a93f6e435c7c&rfr_iscdi=true