The fuzzy generalized Taylor’s expansion with application in fractional differential equations

In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzy fractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessary that we prove them in details. In application, the fractional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of fuzzy systems (Online) 2019-04, Vol.16 (2), p.57
Hauptverfasser: Armand, Atefeh, Allahviranloo, Tofigh, Abbasbandy, Saeid, Gouyandeh, Zeinab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 57
container_title Iranian journal of fuzzy systems (Online)
container_volume 16
creator Armand, Atefeh
Allahviranloo, Tofigh
Abbasbandy, Saeid
Gouyandeh, Zeinab
description In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzy fractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessary that we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractional differential equations in the sense of Caputo differentiability. The effectiveness of the proposed method is verified by three examples.
doi_str_mv 10.22111/ijfs.2019.4542
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2671762244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671762244</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-821ebfae22fdd1179adeb062497fb99e23da69b9d220b390df711bb4cc0869e3</originalsourceid><addsrcrecordid>eNotUM1KxDAYDKLgsu7Za8Bza74kTZujLP7Bgpfe16T54mYpbbdp0e3J1_D1fBK76ml-GIZhCLkGlnIOALdh72PKGehUZpKfkQVXuUqkEPKcLCAXWcJUJi_JKsZg2WwUGWRqQV7LHVI_TtORvmGDvanDhI6W5li3_ffnV6T40Zkmhrah72HYUdN1dajMcDJCQ31vqhM3NXXBe-yxGcIs8DD-ZuIVufCmjrj6xyUpH-7L9VOyeXl8Xt9tkg4KMSQFB7TeIOfeOYBcG4eWKS517q3WyIUzSlvtOGdWaOZ8DmCtrCpWKI1iSW7-aru-PYwYh-2-Hft5VtzOT0CuOJdS_ADCK1rv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671762244</pqid></control><display><type>article</type><title>The fuzzy generalized Taylor’s expansion with application in fractional differential equations</title><source>EZB Electronic Journals Library</source><creator>Armand, Atefeh ; Allahviranloo, Tofigh ; Abbasbandy, Saeid ; Gouyandeh, Zeinab</creator><creatorcontrib>Armand, Atefeh ; Allahviranloo, Tofigh ; Abbasbandy, Saeid ; Gouyandeh, Zeinab</creatorcontrib><description>In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzy fractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessary that we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractional differential equations in the sense of Caputo differentiability. The effectiveness of the proposed method is verified by three examples.</description><identifier>ISSN: 1735-0654</identifier><identifier>EISSN: 2676-4334</identifier><identifier>DOI: 10.22111/ijfs.2019.4542</identifier><language>eng</language><publisher>Zahedan: University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</publisher><subject>Applied mathematics ; Control theory ; Fuzzy sets</subject><ispartof>Iranian journal of fuzzy systems (Online), 2019-04, Vol.16 (2), p.57</ispartof><rights>2019. This work is published under https://creativecommons.org/licenses/by-nc/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Armand, Atefeh</creatorcontrib><creatorcontrib>Allahviranloo, Tofigh</creatorcontrib><creatorcontrib>Abbasbandy, Saeid</creatorcontrib><creatorcontrib>Gouyandeh, Zeinab</creatorcontrib><title>The fuzzy generalized Taylor’s expansion with application in fractional differential equations</title><title>Iranian journal of fuzzy systems (Online)</title><description>In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzy fractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessary that we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractional differential equations in the sense of Caputo differentiability. The effectiveness of the proposed method is verified by three examples.</description><subject>Applied mathematics</subject><subject>Control theory</subject><subject>Fuzzy sets</subject><issn>1735-0654</issn><issn>2676-4334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotUM1KxDAYDKLgsu7Za8Bza74kTZujLP7Bgpfe16T54mYpbbdp0e3J1_D1fBK76ml-GIZhCLkGlnIOALdh72PKGehUZpKfkQVXuUqkEPKcLCAXWcJUJi_JKsZg2WwUGWRqQV7LHVI_TtORvmGDvanDhI6W5li3_ffnV6T40Zkmhrah72HYUdN1dajMcDJCQ31vqhM3NXXBe-yxGcIs8DD-ZuIVufCmjrj6xyUpH-7L9VOyeXl8Xt9tkg4KMSQFB7TeIOfeOYBcG4eWKS517q3WyIUzSlvtOGdWaOZ8DmCtrCpWKI1iSW7-aru-PYwYh-2-Hft5VtzOT0CuOJdS_ADCK1rv</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Armand, Atefeh</creator><creator>Allahviranloo, Tofigh</creator><creator>Abbasbandy, Saeid</creator><creator>Gouyandeh, Zeinab</creator><general>University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</general><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190401</creationdate><title>The fuzzy generalized Taylor’s expansion with application in fractional differential equations</title><author>Armand, Atefeh ; Allahviranloo, Tofigh ; Abbasbandy, Saeid ; Gouyandeh, Zeinab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-821ebfae22fdd1179adeb062497fb99e23da69b9d220b390df711bb4cc0869e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied mathematics</topic><topic>Control theory</topic><topic>Fuzzy sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armand, Atefeh</creatorcontrib><creatorcontrib>Allahviranloo, Tofigh</creatorcontrib><creatorcontrib>Abbasbandy, Saeid</creatorcontrib><creatorcontrib>Gouyandeh, Zeinab</creatorcontrib><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Iranian journal of fuzzy systems (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armand, Atefeh</au><au>Allahviranloo, Tofigh</au><au>Abbasbandy, Saeid</au><au>Gouyandeh, Zeinab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fuzzy generalized Taylor’s expansion with application in fractional differential equations</atitle><jtitle>Iranian journal of fuzzy systems (Online)</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>16</volume><issue>2</issue><spage>57</spage><pages>57-</pages><issn>1735-0654</issn><eissn>2676-4334</eissn><abstract>In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzy fractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessary that we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractional differential equations in the sense of Caputo differentiability. The effectiveness of the proposed method is verified by three examples.</abstract><cop>Zahedan</cop><pub>University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</pub><doi>10.22111/ijfs.2019.4542</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1735-0654
ispartof Iranian journal of fuzzy systems (Online), 2019-04, Vol.16 (2), p.57
issn 1735-0654
2676-4334
language eng
recordid cdi_proquest_journals_2671762244
source EZB Electronic Journals Library
subjects Applied mathematics
Control theory
Fuzzy sets
title The fuzzy generalized Taylor’s expansion with application in fractional differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fuzzy%20generalized%20Taylor%E2%80%99s%20expansion%20with%20application%20in%20fractional%20differential%20equations&rft.jtitle=Iranian%20journal%20of%20fuzzy%20systems%20(Online)&rft.au=Armand,%20Atefeh&rft.date=2019-04-01&rft.volume=16&rft.issue=2&rft.spage=57&rft.pages=57-&rft.issn=1735-0654&rft.eissn=2676-4334&rft_id=info:doi/10.22111/ijfs.2019.4542&rft_dat=%3Cproquest%3E2671762244%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671762244&rft_id=info:pmid/&rfr_iscdi=true