The fuzzy generalized Taylor’s expansion with application in fractional differential equations
In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzy fractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessary that we prove them in details. In application, the fractional...
Gespeichert in:
Veröffentlicht in: | Iranian journal of fuzzy systems (Online) 2019-04, Vol.16 (2), p.57 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 57 |
container_title | Iranian journal of fuzzy systems (Online) |
container_volume | 16 |
creator | Armand, Atefeh Allahviranloo, Tofigh Abbasbandy, Saeid Gouyandeh, Zeinab |
description | In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzy fractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessary that we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractional differential equations in the sense of Caputo differentiability. The effectiveness of the proposed method is verified by three examples. |
doi_str_mv | 10.22111/ijfs.2019.4542 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2671762244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671762244</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-821ebfae22fdd1179adeb062497fb99e23da69b9d220b390df711bb4cc0869e3</originalsourceid><addsrcrecordid>eNotUM1KxDAYDKLgsu7Za8Bza74kTZujLP7Bgpfe16T54mYpbbdp0e3J1_D1fBK76ml-GIZhCLkGlnIOALdh72PKGehUZpKfkQVXuUqkEPKcLCAXWcJUJi_JKsZg2WwUGWRqQV7LHVI_TtORvmGDvanDhI6W5li3_ffnV6T40Zkmhrah72HYUdN1dajMcDJCQ31vqhM3NXXBe-yxGcIs8DD-ZuIVufCmjrj6xyUpH-7L9VOyeXl8Xt9tkg4KMSQFB7TeIOfeOYBcG4eWKS517q3WyIUzSlvtOGdWaOZ8DmCtrCpWKI1iSW7-aru-PYwYh-2-Hft5VtzOT0CuOJdS_ADCK1rv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671762244</pqid></control><display><type>article</type><title>The fuzzy generalized Taylor’s expansion with application in fractional differential equations</title><source>EZB Electronic Journals Library</source><creator>Armand, Atefeh ; Allahviranloo, Tofigh ; Abbasbandy, Saeid ; Gouyandeh, Zeinab</creator><creatorcontrib>Armand, Atefeh ; Allahviranloo, Tofigh ; Abbasbandy, Saeid ; Gouyandeh, Zeinab</creatorcontrib><description>In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzy fractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessary that we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractional differential equations in the sense of Caputo differentiability. The effectiveness of the proposed method is verified by three examples.</description><identifier>ISSN: 1735-0654</identifier><identifier>EISSN: 2676-4334</identifier><identifier>DOI: 10.22111/ijfs.2019.4542</identifier><language>eng</language><publisher>Zahedan: University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</publisher><subject>Applied mathematics ; Control theory ; Fuzzy sets</subject><ispartof>Iranian journal of fuzzy systems (Online), 2019-04, Vol.16 (2), p.57</ispartof><rights>2019. This work is published under https://creativecommons.org/licenses/by-nc/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Armand, Atefeh</creatorcontrib><creatorcontrib>Allahviranloo, Tofigh</creatorcontrib><creatorcontrib>Abbasbandy, Saeid</creatorcontrib><creatorcontrib>Gouyandeh, Zeinab</creatorcontrib><title>The fuzzy generalized Taylor’s expansion with application in fractional differential equations</title><title>Iranian journal of fuzzy systems (Online)</title><description>In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzy fractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessary that we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractional differential equations in the sense of Caputo differentiability. The effectiveness of the proposed method is verified by three examples.</description><subject>Applied mathematics</subject><subject>Control theory</subject><subject>Fuzzy sets</subject><issn>1735-0654</issn><issn>2676-4334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotUM1KxDAYDKLgsu7Za8Bza74kTZujLP7Bgpfe16T54mYpbbdp0e3J1_D1fBK76ml-GIZhCLkGlnIOALdh72PKGehUZpKfkQVXuUqkEPKcLCAXWcJUJi_JKsZg2WwUGWRqQV7LHVI_TtORvmGDvanDhI6W5li3_ffnV6T40Zkmhrah72HYUdN1dajMcDJCQ31vqhM3NXXBe-yxGcIs8DD-ZuIVufCmjrj6xyUpH-7L9VOyeXl8Xt9tkg4KMSQFB7TeIOfeOYBcG4eWKS517q3WyIUzSlvtOGdWaOZ8DmCtrCpWKI1iSW7-aru-PYwYh-2-Hft5VtzOT0CuOJdS_ADCK1rv</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Armand, Atefeh</creator><creator>Allahviranloo, Tofigh</creator><creator>Abbasbandy, Saeid</creator><creator>Gouyandeh, Zeinab</creator><general>University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</general><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190401</creationdate><title>The fuzzy generalized Taylor’s expansion with application in fractional differential equations</title><author>Armand, Atefeh ; Allahviranloo, Tofigh ; Abbasbandy, Saeid ; Gouyandeh, Zeinab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-821ebfae22fdd1179adeb062497fb99e23da69b9d220b390df711bb4cc0869e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied mathematics</topic><topic>Control theory</topic><topic>Fuzzy sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armand, Atefeh</creatorcontrib><creatorcontrib>Allahviranloo, Tofigh</creatorcontrib><creatorcontrib>Abbasbandy, Saeid</creatorcontrib><creatorcontrib>Gouyandeh, Zeinab</creatorcontrib><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Iranian journal of fuzzy systems (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armand, Atefeh</au><au>Allahviranloo, Tofigh</au><au>Abbasbandy, Saeid</au><au>Gouyandeh, Zeinab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fuzzy generalized Taylor’s expansion with application in fractional differential equations</atitle><jtitle>Iranian journal of fuzzy systems (Online)</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>16</volume><issue>2</issue><spage>57</spage><pages>57-</pages><issn>1735-0654</issn><eissn>2676-4334</eissn><abstract>In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzy fractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessary that we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractional differential equations in the sense of Caputo differentiability. The effectiveness of the proposed method is verified by three examples.</abstract><cop>Zahedan</cop><pub>University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</pub><doi>10.22111/ijfs.2019.4542</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1735-0654 |
ispartof | Iranian journal of fuzzy systems (Online), 2019-04, Vol.16 (2), p.57 |
issn | 1735-0654 2676-4334 |
language | eng |
recordid | cdi_proquest_journals_2671762244 |
source | EZB Electronic Journals Library |
subjects | Applied mathematics Control theory Fuzzy sets |
title | The fuzzy generalized Taylor’s expansion with application in fractional differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fuzzy%20generalized%20Taylor%E2%80%99s%20expansion%20with%20application%20in%20fractional%20differential%20equations&rft.jtitle=Iranian%20journal%20of%20fuzzy%20systems%20(Online)&rft.au=Armand,%20Atefeh&rft.date=2019-04-01&rft.volume=16&rft.issue=2&rft.spage=57&rft.pages=57-&rft.issn=1735-0654&rft.eissn=2676-4334&rft_id=info:doi/10.22111/ijfs.2019.4542&rft_dat=%3Cproquest%3E2671762244%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671762244&rft_id=info:pmid/&rfr_iscdi=true |