On Goursat problem for fuzzy random partial differential equations under generalized Lipschitz conditions

Fuzzy random partial differential equations (PDEs) present a connection between random dynamical systems with nonstatistical inexactness data. These blended models could be efficiently used in modeling dynamical systems working in vagueness and ambiguity environments such as fuzzy random adaptive co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IRANIAN JOURNAL OF FUZZY SYSTEMS 2021-04, Vol.18 (2), p.31-49
Hauptverfasser: Son, N. T. Kim, Long, H. V., Dong, N. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 2
container_start_page 31
container_title IRANIAN JOURNAL OF FUZZY SYSTEMS
container_volume 18
creator Son, N. T. Kim
Long, H. V.
Dong, N. P.
description Fuzzy random partial differential equations (PDEs) present a connection between random dynamical systems with nonstatistical inexactness data. These blended models could be efficiently used in modeling dynamical systems working in vagueness and ambiguity environments such as fuzzy random adaptive control, fuzzy random financial prediction, fuzzy random biological modeling, etc. In this article, we study Goursat problem for fuzzy random wave equations in the framework of generalized complete metric spaces in the sense of Luxemburg. We consider equations under generalized Hukuhara differentiability. The force functions are constrained by generalized Lipschitz conditions, that makes the range of PDEs types wider than using unbounded and locally Lipschitz conditions. The existence, uniqueness and boundedness of fuzzy solutions are investigated by employing Picard successive approximation method and Luxemburg fixed point theorem. Some illustrated examples are given to demonstrate for theoretical results.
doi_str_mv 10.22111/ijfs.2021.5912
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2671735510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671735510</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-a0974e3b6879e001551c47ca9a8b9878ad5fde93acbe5cc544c8271704e0827d3</originalsourceid><addsrcrecordid>eNqNkM1qwzAQhEVpoSHNuVdBj8WpZFmWfCymfxDIpT0bWVq1Co7sSDYlfvqqSR-gp50dPnaZQeiWknWeU0of3M7GdU5yuuYVzS_QIi9FmRWMFZdoQQXjGSl5cY1WMbqWJENyyssFcluPX_opRDXiIfRtB3ts-4DtNM9HHJQ3_R4PKoxOddg4ayGAPy1wmNToeh_x5A0E_AkegurcDAZv3BD1lxtnrHtv3Am7QVdWdRFWf3OJPp6f3uvXbLN9easfN9lAJRszRSpRAGtLKSoghHJOdSG0qpRsKymkMtwaqJjSLXCteVFomQsqSAEkCcOW6O58N8U5TBDHZpfy-fSySZ38VsEpSdT9mfqGtrdRO_AamiG4vQrHhhBSkiovOU-KsETL_9O1G0_F1P3kR_YDdsx9fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671735510</pqid></control><display><type>article</type><title>On Goursat problem for fuzzy random partial differential equations under generalized Lipschitz conditions</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Son, N. T. Kim ; Long, H. V. ; Dong, N. P.</creator><creatorcontrib>Son, N. T. Kim ; Long, H. V. ; Dong, N. P.</creatorcontrib><description>Fuzzy random partial differential equations (PDEs) present a connection between random dynamical systems with nonstatistical inexactness data. These blended models could be efficiently used in modeling dynamical systems working in vagueness and ambiguity environments such as fuzzy random adaptive control, fuzzy random financial prediction, fuzzy random biological modeling, etc. In this article, we study Goursat problem for fuzzy random wave equations in the framework of generalized complete metric spaces in the sense of Luxemburg. We consider equations under generalized Hukuhara differentiability. The force functions are constrained by generalized Lipschitz conditions, that makes the range of PDEs types wider than using unbounded and locally Lipschitz conditions. The existence, uniqueness and boundedness of fuzzy solutions are investigated by employing Picard successive approximation method and Luxemburg fixed point theorem. Some illustrated examples are given to demonstrate for theoretical results.</description><identifier>ISSN: 1735-0654</identifier><identifier>EISSN: 2676-4334</identifier><identifier>DOI: 10.22111/ijfs.2021.5912</identifier><language>eng</language><publisher>ZAHEDAN: Univ Sistan &amp; Baluchestan</publisher><subject>Dynamical systems ; Mathematics ; Mathematics, Applied ; Partial differential equations ; Physical Sciences ; Science &amp; Technology</subject><ispartof>IRANIAN JOURNAL OF FUZZY SYSTEMS, 2021-04, Vol.18 (2), p.31-49</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by-nc/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000609265500003</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p183t-a0974e3b6879e001551c47ca9a8b9878ad5fde93acbe5cc544c8271704e0827d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Son, N. T. Kim</creatorcontrib><creatorcontrib>Long, H. V.</creatorcontrib><creatorcontrib>Dong, N. P.</creatorcontrib><title>On Goursat problem for fuzzy random partial differential equations under generalized Lipschitz conditions</title><title>IRANIAN JOURNAL OF FUZZY SYSTEMS</title><addtitle>IRAN J FUZZY SYST</addtitle><description>Fuzzy random partial differential equations (PDEs) present a connection between random dynamical systems with nonstatistical inexactness data. These blended models could be efficiently used in modeling dynamical systems working in vagueness and ambiguity environments such as fuzzy random adaptive control, fuzzy random financial prediction, fuzzy random biological modeling, etc. In this article, we study Goursat problem for fuzzy random wave equations in the framework of generalized complete metric spaces in the sense of Luxemburg. We consider equations under generalized Hukuhara differentiability. The force functions are constrained by generalized Lipschitz conditions, that makes the range of PDEs types wider than using unbounded and locally Lipschitz conditions. The existence, uniqueness and boundedness of fuzzy solutions are investigated by employing Picard successive approximation method and Luxemburg fixed point theorem. Some illustrated examples are given to demonstrate for theoretical results.</description><subject>Dynamical systems</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>Partial differential equations</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>1735-0654</issn><issn>2676-4334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkM1qwzAQhEVpoSHNuVdBj8WpZFmWfCymfxDIpT0bWVq1Co7sSDYlfvqqSR-gp50dPnaZQeiWknWeU0of3M7GdU5yuuYVzS_QIi9FmRWMFZdoQQXjGSl5cY1WMbqWJENyyssFcluPX_opRDXiIfRtB3ts-4DtNM9HHJQ3_R4PKoxOddg4ayGAPy1wmNToeh_x5A0E_AkegurcDAZv3BD1lxtnrHtv3Am7QVdWdRFWf3OJPp6f3uvXbLN9easfN9lAJRszRSpRAGtLKSoghHJOdSG0qpRsKymkMtwaqJjSLXCteVFomQsqSAEkCcOW6O58N8U5TBDHZpfy-fSySZ38VsEpSdT9mfqGtrdRO_AamiG4vQrHhhBSkiovOU-KsETL_9O1G0_F1P3kR_YDdsx9fg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Son, N. T. Kim</creator><creator>Long, H. V.</creator><creator>Dong, N. P.</creator><general>Univ Sistan &amp; Baluchestan</general><general>University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210401</creationdate><title>On Goursat problem for fuzzy random partial differential equations under generalized Lipschitz conditions</title><author>Son, N. T. Kim ; Long, H. V. ; Dong, N. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-a0974e3b6879e001551c47ca9a8b9878ad5fde93acbe5cc544c8271704e0827d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dynamical systems</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>Partial differential equations</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, N. T. Kim</creatorcontrib><creatorcontrib>Long, H. V.</creatorcontrib><creatorcontrib>Dong, N. P.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>IRANIAN JOURNAL OF FUZZY SYSTEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, N. T. Kim</au><au>Long, H. V.</au><au>Dong, N. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Goursat problem for fuzzy random partial differential equations under generalized Lipschitz conditions</atitle><jtitle>IRANIAN JOURNAL OF FUZZY SYSTEMS</jtitle><stitle>IRAN J FUZZY SYST</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><spage>31</spage><epage>49</epage><pages>31-49</pages><issn>1735-0654</issn><eissn>2676-4334</eissn><abstract>Fuzzy random partial differential equations (PDEs) present a connection between random dynamical systems with nonstatistical inexactness data. These blended models could be efficiently used in modeling dynamical systems working in vagueness and ambiguity environments such as fuzzy random adaptive control, fuzzy random financial prediction, fuzzy random biological modeling, etc. In this article, we study Goursat problem for fuzzy random wave equations in the framework of generalized complete metric spaces in the sense of Luxemburg. We consider equations under generalized Hukuhara differentiability. The force functions are constrained by generalized Lipschitz conditions, that makes the range of PDEs types wider than using unbounded and locally Lipschitz conditions. The existence, uniqueness and boundedness of fuzzy solutions are investigated by employing Picard successive approximation method and Luxemburg fixed point theorem. Some illustrated examples are given to demonstrate for theoretical results.</abstract><cop>ZAHEDAN</cop><pub>Univ Sistan &amp; Baluchestan</pub><doi>10.22111/ijfs.2021.5912</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1735-0654
ispartof IRANIAN JOURNAL OF FUZZY SYSTEMS, 2021-04, Vol.18 (2), p.31-49
issn 1735-0654
2676-4334
language eng
recordid cdi_proquest_journals_2671735510
source EZB-FREE-00999 freely available EZB journals
subjects Dynamical systems
Mathematics
Mathematics, Applied
Partial differential equations
Physical Sciences
Science & Technology
title On Goursat problem for fuzzy random partial differential equations under generalized Lipschitz conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Goursat%20problem%20for%20fuzzy%20random%20partial%20differential%20equations%20under%20generalized%20Lipschitz%20conditions&rft.jtitle=IRANIAN%20JOURNAL%20OF%20FUZZY%20SYSTEMS&rft.au=Son,%20N.%20T.%20Kim&rft.date=2021-04-01&rft.volume=18&rft.issue=2&rft.spage=31&rft.epage=49&rft.pages=31-49&rft.issn=1735-0654&rft.eissn=2676-4334&rft_id=info:doi/10.22111/ijfs.2021.5912&rft_dat=%3Cproquest_webof%3E2671735510%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671735510&rft_id=info:pmid/&rfr_iscdi=true