On Goursat problem for fuzzy random partial differential equations under generalized Lipschitz conditions
Fuzzy random partial differential equations (PDEs) present a connection between random dynamical systems with nonstatistical inexactness data. These blended models could be efficiently used in modeling dynamical systems working in vagueness and ambiguity environments such as fuzzy random adaptive co...
Gespeichert in:
Veröffentlicht in: | IRANIAN JOURNAL OF FUZZY SYSTEMS 2021-04, Vol.18 (2), p.31-49 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 2 |
container_start_page | 31 |
container_title | IRANIAN JOURNAL OF FUZZY SYSTEMS |
container_volume | 18 |
creator | Son, N. T. Kim Long, H. V. Dong, N. P. |
description | Fuzzy random partial differential equations (PDEs) present a connection between random dynamical systems with nonstatistical inexactness data. These blended models could be efficiently used in modeling dynamical systems working in vagueness and ambiguity environments such as fuzzy random adaptive control, fuzzy random financial prediction, fuzzy random biological modeling, etc. In this article, we study Goursat problem for fuzzy random wave equations in the framework of generalized complete metric spaces in the sense of Luxemburg. We consider equations under generalized Hukuhara differentiability. The force functions are constrained by generalized Lipschitz conditions, that makes the range of PDEs types wider than using unbounded and locally Lipschitz conditions. The existence, uniqueness and boundedness of fuzzy solutions are investigated by employing Picard successive approximation method and Luxemburg fixed point theorem. Some illustrated examples are given to demonstrate for theoretical results. |
doi_str_mv | 10.22111/ijfs.2021.5912 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2671735510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671735510</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-a0974e3b6879e001551c47ca9a8b9878ad5fde93acbe5cc544c8271704e0827d3</originalsourceid><addsrcrecordid>eNqNkM1qwzAQhEVpoSHNuVdBj8WpZFmWfCymfxDIpT0bWVq1Co7sSDYlfvqqSR-gp50dPnaZQeiWknWeU0of3M7GdU5yuuYVzS_QIi9FmRWMFZdoQQXjGSl5cY1WMbqWJENyyssFcluPX_opRDXiIfRtB3ts-4DtNM9HHJQ3_R4PKoxOddg4ayGAPy1wmNToeh_x5A0E_AkegurcDAZv3BD1lxtnrHtv3Am7QVdWdRFWf3OJPp6f3uvXbLN9easfN9lAJRszRSpRAGtLKSoghHJOdSG0qpRsKymkMtwaqJjSLXCteVFomQsqSAEkCcOW6O58N8U5TBDHZpfy-fSySZ38VsEpSdT9mfqGtrdRO_AamiG4vQrHhhBSkiovOU-KsETL_9O1G0_F1P3kR_YDdsx9fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671735510</pqid></control><display><type>article</type><title>On Goursat problem for fuzzy random partial differential equations under generalized Lipschitz conditions</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Son, N. T. Kim ; Long, H. V. ; Dong, N. P.</creator><creatorcontrib>Son, N. T. Kim ; Long, H. V. ; Dong, N. P.</creatorcontrib><description>Fuzzy random partial differential equations (PDEs) present a connection between random dynamical systems with nonstatistical inexactness data. These blended models could be efficiently used in modeling dynamical systems working in vagueness and ambiguity environments such as fuzzy random adaptive control, fuzzy random financial prediction, fuzzy random biological modeling, etc. In this article, we study Goursat problem for fuzzy random wave equations in the framework of generalized complete metric spaces in the sense of Luxemburg. We consider equations under generalized Hukuhara differentiability. The force functions are constrained by generalized Lipschitz conditions, that makes the range of PDEs types wider than using unbounded and locally Lipschitz conditions. The existence, uniqueness and boundedness of fuzzy solutions are investigated by employing Picard successive approximation method and Luxemburg fixed point theorem. Some illustrated examples are given to demonstrate for theoretical results.</description><identifier>ISSN: 1735-0654</identifier><identifier>EISSN: 2676-4334</identifier><identifier>DOI: 10.22111/ijfs.2021.5912</identifier><language>eng</language><publisher>ZAHEDAN: Univ Sistan & Baluchestan</publisher><subject>Dynamical systems ; Mathematics ; Mathematics, Applied ; Partial differential equations ; Physical Sciences ; Science & Technology</subject><ispartof>IRANIAN JOURNAL OF FUZZY SYSTEMS, 2021-04, Vol.18 (2), p.31-49</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by-nc/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000609265500003</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p183t-a0974e3b6879e001551c47ca9a8b9878ad5fde93acbe5cc544c8271704e0827d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Son, N. T. Kim</creatorcontrib><creatorcontrib>Long, H. V.</creatorcontrib><creatorcontrib>Dong, N. P.</creatorcontrib><title>On Goursat problem for fuzzy random partial differential equations under generalized Lipschitz conditions</title><title>IRANIAN JOURNAL OF FUZZY SYSTEMS</title><addtitle>IRAN J FUZZY SYST</addtitle><description>Fuzzy random partial differential equations (PDEs) present a connection between random dynamical systems with nonstatistical inexactness data. These blended models could be efficiently used in modeling dynamical systems working in vagueness and ambiguity environments such as fuzzy random adaptive control, fuzzy random financial prediction, fuzzy random biological modeling, etc. In this article, we study Goursat problem for fuzzy random wave equations in the framework of generalized complete metric spaces in the sense of Luxemburg. We consider equations under generalized Hukuhara differentiability. The force functions are constrained by generalized Lipschitz conditions, that makes the range of PDEs types wider than using unbounded and locally Lipschitz conditions. The existence, uniqueness and boundedness of fuzzy solutions are investigated by employing Picard successive approximation method and Luxemburg fixed point theorem. Some illustrated examples are given to demonstrate for theoretical results.</description><subject>Dynamical systems</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>Partial differential equations</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><issn>1735-0654</issn><issn>2676-4334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkM1qwzAQhEVpoSHNuVdBj8WpZFmWfCymfxDIpT0bWVq1Co7sSDYlfvqqSR-gp50dPnaZQeiWknWeU0of3M7GdU5yuuYVzS_QIi9FmRWMFZdoQQXjGSl5cY1WMbqWJENyyssFcluPX_opRDXiIfRtB3ts-4DtNM9HHJQ3_R4PKoxOddg4ayGAPy1wmNToeh_x5A0E_AkegurcDAZv3BD1lxtnrHtv3Am7QVdWdRFWf3OJPp6f3uvXbLN9easfN9lAJRszRSpRAGtLKSoghHJOdSG0qpRsKymkMtwaqJjSLXCteVFomQsqSAEkCcOW6O58N8U5TBDHZpfy-fSySZ38VsEpSdT9mfqGtrdRO_AamiG4vQrHhhBSkiovOU-KsETL_9O1G0_F1P3kR_YDdsx9fg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Son, N. T. Kim</creator><creator>Long, H. V.</creator><creator>Dong, N. P.</creator><general>Univ Sistan & Baluchestan</general><general>University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210401</creationdate><title>On Goursat problem for fuzzy random partial differential equations under generalized Lipschitz conditions</title><author>Son, N. T. Kim ; Long, H. V. ; Dong, N. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-a0974e3b6879e001551c47ca9a8b9878ad5fde93acbe5cc544c8271704e0827d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dynamical systems</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>Partial differential equations</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, N. T. Kim</creatorcontrib><creatorcontrib>Long, H. V.</creatorcontrib><creatorcontrib>Dong, N. P.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>IRANIAN JOURNAL OF FUZZY SYSTEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, N. T. Kim</au><au>Long, H. V.</au><au>Dong, N. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Goursat problem for fuzzy random partial differential equations under generalized Lipschitz conditions</atitle><jtitle>IRANIAN JOURNAL OF FUZZY SYSTEMS</jtitle><stitle>IRAN J FUZZY SYST</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><spage>31</spage><epage>49</epage><pages>31-49</pages><issn>1735-0654</issn><eissn>2676-4334</eissn><abstract>Fuzzy random partial differential equations (PDEs) present a connection between random dynamical systems with nonstatistical inexactness data. These blended models could be efficiently used in modeling dynamical systems working in vagueness and ambiguity environments such as fuzzy random adaptive control, fuzzy random financial prediction, fuzzy random biological modeling, etc. In this article, we study Goursat problem for fuzzy random wave equations in the framework of generalized complete metric spaces in the sense of Luxemburg. We consider equations under generalized Hukuhara differentiability. The force functions are constrained by generalized Lipschitz conditions, that makes the range of PDEs types wider than using unbounded and locally Lipschitz conditions. The existence, uniqueness and boundedness of fuzzy solutions are investigated by employing Picard successive approximation method and Luxemburg fixed point theorem. Some illustrated examples are given to demonstrate for theoretical results.</abstract><cop>ZAHEDAN</cop><pub>Univ Sistan & Baluchestan</pub><doi>10.22111/ijfs.2021.5912</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1735-0654 |
ispartof | IRANIAN JOURNAL OF FUZZY SYSTEMS, 2021-04, Vol.18 (2), p.31-49 |
issn | 1735-0654 2676-4334 |
language | eng |
recordid | cdi_proquest_journals_2671735510 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Dynamical systems Mathematics Mathematics, Applied Partial differential equations Physical Sciences Science & Technology |
title | On Goursat problem for fuzzy random partial differential equations under generalized Lipschitz conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Goursat%20problem%20for%20fuzzy%20random%20partial%20differential%20equations%20under%20generalized%20Lipschitz%20conditions&rft.jtitle=IRANIAN%20JOURNAL%20OF%20FUZZY%20SYSTEMS&rft.au=Son,%20N.%20T.%20Kim&rft.date=2021-04-01&rft.volume=18&rft.issue=2&rft.spage=31&rft.epage=49&rft.pages=31-49&rft.issn=1735-0654&rft.eissn=2676-4334&rft_id=info:doi/10.22111/ijfs.2021.5912&rft_dat=%3Cproquest_webof%3E2671735510%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671735510&rft_id=info:pmid/&rfr_iscdi=true |