ZFP36L2 suppresses mTORc1 through a P53-dependent pathway to prevent peripartum cardiomyopathy in mice

Pregnancy is associated with substantial physiological changes of the heart, and disruptions in these processes can lead to peripartum cardiomyopathy (PPCM). The molecular processes that cause physiological and pathological changes in the heart during pregnancy are not well characterized. Here, we s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2022-05, Vol.132 (10), p.1-15
Hauptverfasser: Kouzu, Hidemichi, Tatekoshi, Yuki, Chang, Hsiang-Chun, Shapiro, Jason S, McGee, Warren A, De Jesus, Adam, Ben-Sahra, Issam, Arany, Zoltan, Leor, Jonathan, Chen, Chunlei, Blackshear, Perry J, Ardehali, Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 10
container_start_page 1
container_title The Journal of clinical investigation
container_volume 132
creator Kouzu, Hidemichi
Tatekoshi, Yuki
Chang, Hsiang-Chun
Shapiro, Jason S
McGee, Warren A
De Jesus, Adam
Ben-Sahra, Issam
Arany, Zoltan
Leor, Jonathan
Chen, Chunlei
Blackshear, Perry J
Ardehali, Hossein
description Pregnancy is associated with substantial physiological changes of the heart, and disruptions in these processes can lead to peripartum cardiomyopathy (PPCM). The molecular processes that cause physiological and pathological changes in the heart during pregnancy are not well characterized. Here, we show that mTORc1 was activated in pregnancy to facilitate cardiac enlargement that was reversed after delivery in mice. mTORc1 activation in pregnancy was negatively regulated by the mRNA-destabilizing protein ZFP36L2 through its degradation of Mdm2 mRNA and P53 stabilization, leading to increased SESN2 and REDD1 expression. This pathway impeded uncontrolled cardiomyocyte hypertrophy during pregnancy, and mice with cardiac-specific Zfp36l2 deletion developed rapid cardiac dysfunction after delivery, while prenatal treatment of these mice with rapamycin improved postpartum cardiac function. Collectively, these data provide what we believe to be a novel pathway for the regulation of mTORc1 through mRNA stabilization of a P53 ubiquitin ligase. This pathway was critical for normal cardiac growth during pregnancy, and its reduction led to PPCM-like adverse remodeling in mice.
doi_str_mv 10.1172/JCI154491.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2671718626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671718626</sourcerecordid><originalsourceid>FETCH-proquest_journals_26717186263</originalsourceid><addsrcrecordid>eNqNi8tKw0AUhgdRMF42PsEB16lz5pJM18WiRbCUrropQ3JqUkxmnIuSt7eKD-Dqh-_7fsbukM8Qa_GwWjyjVmqOszNWoNamNEKac1ZwLrCc19JcsqsYj5yjUloV7LBbrmX1IiBm7wPFSBGG7eumQUhdcPmtAwtrLcuWPI0tjQm8Td2XnSA5OD0-fxGF3tuQ8gCNDW3vhsn9ZBP0Iwx9Qzfs4mDfI93-7TW7Xz5uF0-lD-4jU0z7o8thPKm9qGqs0VSikv-rvgHoQEue</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671718626</pqid></control><display><type>article</type><title>ZFP36L2 suppresses mTORc1 through a P53-dependent pathway to prevent peripartum cardiomyopathy in mice</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Kouzu, Hidemichi ; Tatekoshi, Yuki ; Chang, Hsiang-Chun ; Shapiro, Jason S ; McGee, Warren A ; De Jesus, Adam ; Ben-Sahra, Issam ; Arany, Zoltan ; Leor, Jonathan ; Chen, Chunlei ; Blackshear, Perry J ; Ardehali, Hossein</creator><creatorcontrib>Kouzu, Hidemichi ; Tatekoshi, Yuki ; Chang, Hsiang-Chun ; Shapiro, Jason S ; McGee, Warren A ; De Jesus, Adam ; Ben-Sahra, Issam ; Arany, Zoltan ; Leor, Jonathan ; Chen, Chunlei ; Blackshear, Perry J ; Ardehali, Hossein</creatorcontrib><description>Pregnancy is associated with substantial physiological changes of the heart, and disruptions in these processes can lead to peripartum cardiomyopathy (PPCM). The molecular processes that cause physiological and pathological changes in the heart during pregnancy are not well characterized. Here, we show that mTORc1 was activated in pregnancy to facilitate cardiac enlargement that was reversed after delivery in mice. mTORc1 activation in pregnancy was negatively regulated by the mRNA-destabilizing protein ZFP36L2 through its degradation of Mdm2 mRNA and P53 stabilization, leading to increased SESN2 and REDD1 expression. This pathway impeded uncontrolled cardiomyocyte hypertrophy during pregnancy, and mice with cardiac-specific Zfp36l2 deletion developed rapid cardiac dysfunction after delivery, while prenatal treatment of these mice with rapamycin improved postpartum cardiac function. Collectively, these data provide what we believe to be a novel pathway for the regulation of mTORc1 through mRNA stabilization of a P53 ubiquitin ligase. This pathway was critical for normal cardiac growth during pregnancy, and its reduction led to PPCM-like adverse remodeling in mice.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI154491.</identifier><language>eng</language><publisher>Ann Arbor: American Society for Clinical Investigation</publisher><subject>Autophagy ; Biomedical research ; Cardiac function ; Cardiomyocytes ; Cardiomyopathy ; Genotype &amp; phenotype ; Heart failure ; Hypertrophy ; MDM2 protein ; Mortality ; mRNA ; p53 Protein ; Physiology ; Pregnancy ; Proteins ; Rapamycin ; Rodents ; Ubiquitin ; Ubiquitin-protein ligase</subject><ispartof>The Journal of clinical investigation, 2022-05, Vol.132 (10), p.1-15</ispartof><rights>Copyright American Society for Clinical Investigation May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Kouzu, Hidemichi</creatorcontrib><creatorcontrib>Tatekoshi, Yuki</creatorcontrib><creatorcontrib>Chang, Hsiang-Chun</creatorcontrib><creatorcontrib>Shapiro, Jason S</creatorcontrib><creatorcontrib>McGee, Warren A</creatorcontrib><creatorcontrib>De Jesus, Adam</creatorcontrib><creatorcontrib>Ben-Sahra, Issam</creatorcontrib><creatorcontrib>Arany, Zoltan</creatorcontrib><creatorcontrib>Leor, Jonathan</creatorcontrib><creatorcontrib>Chen, Chunlei</creatorcontrib><creatorcontrib>Blackshear, Perry J</creatorcontrib><creatorcontrib>Ardehali, Hossein</creatorcontrib><title>ZFP36L2 suppresses mTORc1 through a P53-dependent pathway to prevent peripartum cardiomyopathy in mice</title><title>The Journal of clinical investigation</title><description>Pregnancy is associated with substantial physiological changes of the heart, and disruptions in these processes can lead to peripartum cardiomyopathy (PPCM). The molecular processes that cause physiological and pathological changes in the heart during pregnancy are not well characterized. Here, we show that mTORc1 was activated in pregnancy to facilitate cardiac enlargement that was reversed after delivery in mice. mTORc1 activation in pregnancy was negatively regulated by the mRNA-destabilizing protein ZFP36L2 through its degradation of Mdm2 mRNA and P53 stabilization, leading to increased SESN2 and REDD1 expression. This pathway impeded uncontrolled cardiomyocyte hypertrophy during pregnancy, and mice with cardiac-specific Zfp36l2 deletion developed rapid cardiac dysfunction after delivery, while prenatal treatment of these mice with rapamycin improved postpartum cardiac function. Collectively, these data provide what we believe to be a novel pathway for the regulation of mTORc1 through mRNA stabilization of a P53 ubiquitin ligase. This pathway was critical for normal cardiac growth during pregnancy, and its reduction led to PPCM-like adverse remodeling in mice.</description><subject>Autophagy</subject><subject>Biomedical research</subject><subject>Cardiac function</subject><subject>Cardiomyocytes</subject><subject>Cardiomyopathy</subject><subject>Genotype &amp; phenotype</subject><subject>Heart failure</subject><subject>Hypertrophy</subject><subject>MDM2 protein</subject><subject>Mortality</subject><subject>mRNA</subject><subject>p53 Protein</subject><subject>Physiology</subject><subject>Pregnancy</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>Rodents</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNi8tKw0AUhgdRMF42PsEB16lz5pJM18WiRbCUrropQ3JqUkxmnIuSt7eKD-Dqh-_7fsbukM8Qa_GwWjyjVmqOszNWoNamNEKac1ZwLrCc19JcsqsYj5yjUloV7LBbrmX1IiBm7wPFSBGG7eumQUhdcPmtAwtrLcuWPI0tjQm8Td2XnSA5OD0-fxGF3tuQ8gCNDW3vhsn9ZBP0Iwx9Qzfs4mDfI93-7TW7Xz5uF0-lD-4jU0z7o8thPKm9qGqs0VSikv-rvgHoQEue</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Kouzu, Hidemichi</creator><creator>Tatekoshi, Yuki</creator><creator>Chang, Hsiang-Chun</creator><creator>Shapiro, Jason S</creator><creator>McGee, Warren A</creator><creator>De Jesus, Adam</creator><creator>Ben-Sahra, Issam</creator><creator>Arany, Zoltan</creator><creator>Leor, Jonathan</creator><creator>Chen, Chunlei</creator><creator>Blackshear, Perry J</creator><creator>Ardehali, Hossein</creator><general>American Society for Clinical Investigation</general><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope></search><sort><creationdate>20220501</creationdate><title>ZFP36L2 suppresses mTORc1 through a P53-dependent pathway to prevent peripartum cardiomyopathy in mice</title><author>Kouzu, Hidemichi ; Tatekoshi, Yuki ; Chang, Hsiang-Chun ; Shapiro, Jason S ; McGee, Warren A ; De Jesus, Adam ; Ben-Sahra, Issam ; Arany, Zoltan ; Leor, Jonathan ; Chen, Chunlei ; Blackshear, Perry J ; Ardehali, Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26717186263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autophagy</topic><topic>Biomedical research</topic><topic>Cardiac function</topic><topic>Cardiomyocytes</topic><topic>Cardiomyopathy</topic><topic>Genotype &amp; phenotype</topic><topic>Heart failure</topic><topic>Hypertrophy</topic><topic>MDM2 protein</topic><topic>Mortality</topic><topic>mRNA</topic><topic>p53 Protein</topic><topic>Physiology</topic><topic>Pregnancy</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>Rodents</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouzu, Hidemichi</creatorcontrib><creatorcontrib>Tatekoshi, Yuki</creatorcontrib><creatorcontrib>Chang, Hsiang-Chun</creatorcontrib><creatorcontrib>Shapiro, Jason S</creatorcontrib><creatorcontrib>McGee, Warren A</creatorcontrib><creatorcontrib>De Jesus, Adam</creatorcontrib><creatorcontrib>Ben-Sahra, Issam</creatorcontrib><creatorcontrib>Arany, Zoltan</creatorcontrib><creatorcontrib>Leor, Jonathan</creatorcontrib><creatorcontrib>Chen, Chunlei</creatorcontrib><creatorcontrib>Blackshear, Perry J</creatorcontrib><creatorcontrib>Ardehali, Hossein</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouzu, Hidemichi</au><au>Tatekoshi, Yuki</au><au>Chang, Hsiang-Chun</au><au>Shapiro, Jason S</au><au>McGee, Warren A</au><au>De Jesus, Adam</au><au>Ben-Sahra, Issam</au><au>Arany, Zoltan</au><au>Leor, Jonathan</au><au>Chen, Chunlei</au><au>Blackshear, Perry J</au><au>Ardehali, Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZFP36L2 suppresses mTORc1 through a P53-dependent pathway to prevent peripartum cardiomyopathy in mice</atitle><jtitle>The Journal of clinical investigation</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>132</volume><issue>10</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Pregnancy is associated with substantial physiological changes of the heart, and disruptions in these processes can lead to peripartum cardiomyopathy (PPCM). The molecular processes that cause physiological and pathological changes in the heart during pregnancy are not well characterized. Here, we show that mTORc1 was activated in pregnancy to facilitate cardiac enlargement that was reversed after delivery in mice. mTORc1 activation in pregnancy was negatively regulated by the mRNA-destabilizing protein ZFP36L2 through its degradation of Mdm2 mRNA and P53 stabilization, leading to increased SESN2 and REDD1 expression. This pathway impeded uncontrolled cardiomyocyte hypertrophy during pregnancy, and mice with cardiac-specific Zfp36l2 deletion developed rapid cardiac dysfunction after delivery, while prenatal treatment of these mice with rapamycin improved postpartum cardiac function. Collectively, these data provide what we believe to be a novel pathway for the regulation of mTORc1 through mRNA stabilization of a P53 ubiquitin ligase. This pathway was critical for normal cardiac growth during pregnancy, and its reduction led to PPCM-like adverse remodeling in mice.</abstract><cop>Ann Arbor</cop><pub>American Society for Clinical Investigation</pub><doi>10.1172/JCI154491.</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2022-05, Vol.132 (10), p.1-15
issn 0021-9738
1558-8238
language eng
recordid cdi_proquest_journals_2671718626
source DOAJ Directory of Open Access Journals; PubMed; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Autophagy
Biomedical research
Cardiac function
Cardiomyocytes
Cardiomyopathy
Genotype & phenotype
Heart failure
Hypertrophy
MDM2 protein
Mortality
mRNA
p53 Protein
Physiology
Pregnancy
Proteins
Rapamycin
Rodents
Ubiquitin
Ubiquitin-protein ligase
title ZFP36L2 suppresses mTORc1 through a P53-dependent pathway to prevent peripartum cardiomyopathy in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZFP36L2%20suppresses%20mTORc1%20through%20a%20P53-dependent%20pathway%20to%20prevent%20peripartum%20cardiomyopathy%20in%20mice&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Kouzu,%20Hidemichi&rft.date=2022-05-01&rft.volume=132&rft.issue=10&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI154491.&rft_dat=%3Cproquest%3E2671718626%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671718626&rft_id=info:pmid/&rfr_iscdi=true