The identified intrinsic active sites for efficient and stable bi-functional catalyst N-MoS2·Ni3S2/NiS: the Mo–N structure and Ni–S structure on the heterogeneous interface synergistically enhance water splitting

Effective analysis and identification of intrinsic active catalytic sites in composite catalysts will favor the regulation of catalyst structures, which could effectually improve their intrinsic catalytic activity and further enhance their water splitting ability. Therefore, a bi-functional composit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-05, Vol.10 (21), p.11755-11765
Hauptverfasser: Gao, Yong, Li, Jingjing, Gong, Hao, Zhang, Chuanxiang, Fan, Haiyun, Xie, Xin, Huang, Xianli, Xue, Hairong, Wang, Tao, He, Jianping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11765
container_issue 21
container_start_page 11755
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 10
creator Gao, Yong
Li, Jingjing
Gong, Hao
Zhang, Chuanxiang
Fan, Haiyun
Xie, Xin
Huang, Xianli
Xue, Hairong
Wang, Tao
He, Jianping
description Effective analysis and identification of intrinsic active catalytic sites in composite catalysts will favor the regulation of catalyst structures, which could effectually improve their intrinsic catalytic activity and further enhance their water splitting ability. Therefore, a bi-functional composite catalyst of N-MoS2·Ni3S2/NiS with specific Mo–N structure and heterogeneous interface was rationally prepared through the self-catalysis strategy. The ultra-thin hierarchical morphology of N-MoS2·Ni3S2/NiS facilitates the exposure of active catalytic sites and the acceleration of electron transmission at the reaction interface. Furthermore, both theoretical calculations and experiments testify that the Mo–N structure and Ni–S sites on the heterogeneous interface between Ni3S2 and NiS are, respectively, specific intrinsic active catalytic sites for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), and the NiOOH formed by in situ oxidation at the interface is a synergistic catalytic site for the OER, and the doping of heteroatom N and the heterogeneous interface jointly regulate the electronic structure of N-MoS2·Ni3S2/NiS, boosting overall water splitting. The optimized catalyst, N-MoS2·Ni3S2/NiS, exhibits excellent performance; the overpotential is only 70 mV and 231 mV, respectively, for the HER and OER at 10 mA cm−2.
doi_str_mv 10.1039/d2ta01333a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2671686316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671686316</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-3ff011dfa58e460fc8a16f4ef2170e69426c05b73c7707f22db5fea5381dddcc3</originalsourceid><addsrcrecordid>eNpNkEtKBDEQhhtRUNSNJwi4bs1jOt3tTsQXOO1ixvWQSSozJU0yJmlldt7Bw7j3Fm49ifGBWJsqfr7666eK4oDRI0ZFe2x4UpQJIdRGscNpRct61MrNv7lptov9GO9proZS2bY7xft0CQQNuIQWwRB0KaCLqInSCR-BREwQifWBgLWoMZNEOUNiUvMeyBxLO7iMeqd6olVS_Tom0pVjP-Fvrx2KCT_ucHJCUj409h_PL13eDYNOQ4Bvpw6zOPknevcNLyFB8Atw4If4FQyCVTonWjsIC4wJter7NQG3VC7rTyoTJK56TAndYq_YsqqPsP_bd4u7i_Pp2VV5c3t5fXZ6U65YI1IprKWMGauqBkaSWt0oJu0ILGc1BdmOuNS0mtdC1zWtLedmXllQlWiYMUZrsVsc_viugn8YIKbZvR9C_kaccVkz2UjBpPgEbfyHTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671686316</pqid></control><display><type>article</type><title>The identified intrinsic active sites for efficient and stable bi-functional catalyst N-MoS2·Ni3S2/NiS: the Mo–N structure and Ni–S structure on the heterogeneous interface synergistically enhance water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gao, Yong ; Li, Jingjing ; Gong, Hao ; Zhang, Chuanxiang ; Fan, Haiyun ; Xie, Xin ; Huang, Xianli ; Xue, Hairong ; Wang, Tao ; He, Jianping</creator><creatorcontrib>Gao, Yong ; Li, Jingjing ; Gong, Hao ; Zhang, Chuanxiang ; Fan, Haiyun ; Xie, Xin ; Huang, Xianli ; Xue, Hairong ; Wang, Tao ; He, Jianping</creatorcontrib><description>Effective analysis and identification of intrinsic active catalytic sites in composite catalysts will favor the regulation of catalyst structures, which could effectually improve their intrinsic catalytic activity and further enhance their water splitting ability. Therefore, a bi-functional composite catalyst of N-MoS2·Ni3S2/NiS with specific Mo–N structure and heterogeneous interface was rationally prepared through the self-catalysis strategy. The ultra-thin hierarchical morphology of N-MoS2·Ni3S2/NiS facilitates the exposure of active catalytic sites and the acceleration of electron transmission at the reaction interface. Furthermore, both theoretical calculations and experiments testify that the Mo–N structure and Ni–S sites on the heterogeneous interface between Ni3S2 and NiS are, respectively, specific intrinsic active catalytic sites for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), and the NiOOH formed by in situ oxidation at the interface is a synergistic catalytic site for the OER, and the doping of heteroatom N and the heterogeneous interface jointly regulate the electronic structure of N-MoS2·Ni3S2/NiS, boosting overall water splitting. The optimized catalyst, N-MoS2·Ni3S2/NiS, exhibits excellent performance; the overpotential is only 70 mV and 231 mV, respectively, for the HER and OER at 10 mA cm−2.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta01333a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acceleration ; Active sites ; Catalysis ; Catalysts ; Catalytic activity ; Electronic structure ; Hydrogen evolution reactions ; Kinases ; Molybdenum disulfide ; Nickel sulfide ; Oxidation ; Oxygen evolution reactions ; Splitting ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-05, Vol.10 (21), p.11755-11765</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Gao, Yong</creatorcontrib><creatorcontrib>Li, Jingjing</creatorcontrib><creatorcontrib>Gong, Hao</creatorcontrib><creatorcontrib>Zhang, Chuanxiang</creatorcontrib><creatorcontrib>Fan, Haiyun</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Huang, Xianli</creatorcontrib><creatorcontrib>Xue, Hairong</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><title>The identified intrinsic active sites for efficient and stable bi-functional catalyst N-MoS2·Ni3S2/NiS: the Mo–N structure and Ni–S structure on the heterogeneous interface synergistically enhance water splitting</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Effective analysis and identification of intrinsic active catalytic sites in composite catalysts will favor the regulation of catalyst structures, which could effectually improve their intrinsic catalytic activity and further enhance their water splitting ability. Therefore, a bi-functional composite catalyst of N-MoS2·Ni3S2/NiS with specific Mo–N structure and heterogeneous interface was rationally prepared through the self-catalysis strategy. The ultra-thin hierarchical morphology of N-MoS2·Ni3S2/NiS facilitates the exposure of active catalytic sites and the acceleration of electron transmission at the reaction interface. Furthermore, both theoretical calculations and experiments testify that the Mo–N structure and Ni–S sites on the heterogeneous interface between Ni3S2 and NiS are, respectively, specific intrinsic active catalytic sites for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), and the NiOOH formed by in situ oxidation at the interface is a synergistic catalytic site for the OER, and the doping of heteroatom N and the heterogeneous interface jointly regulate the electronic structure of N-MoS2·Ni3S2/NiS, boosting overall water splitting. The optimized catalyst, N-MoS2·Ni3S2/NiS, exhibits excellent performance; the overpotential is only 70 mV and 231 mV, respectively, for the HER and OER at 10 mA cm−2.</description><subject>Acceleration</subject><subject>Active sites</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Electronic structure</subject><subject>Hydrogen evolution reactions</subject><subject>Kinases</subject><subject>Molybdenum disulfide</subject><subject>Nickel sulfide</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Splitting</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkEtKBDEQhhtRUNSNJwi4bs1jOt3tTsQXOO1ixvWQSSozJU0yJmlldt7Bw7j3Fm49ifGBWJsqfr7666eK4oDRI0ZFe2x4UpQJIdRGscNpRct61MrNv7lptov9GO9proZS2bY7xft0CQQNuIQWwRB0KaCLqInSCR-BREwQifWBgLWoMZNEOUNiUvMeyBxLO7iMeqd6olVS_Tom0pVjP-Fvrx2KCT_ucHJCUj409h_PL13eDYNOQ4Bvpw6zOPknevcNLyFB8Atw4If4FQyCVTonWjsIC4wJter7NQG3VC7rTyoTJK56TAndYq_YsqqPsP_bd4u7i_Pp2VV5c3t5fXZ6U65YI1IprKWMGauqBkaSWt0oJu0ILGc1BdmOuNS0mtdC1zWtLedmXllQlWiYMUZrsVsc_viugn8YIKbZvR9C_kaccVkz2UjBpPgEbfyHTA</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>Gao, Yong</creator><creator>Li, Jingjing</creator><creator>Gong, Hao</creator><creator>Zhang, Chuanxiang</creator><creator>Fan, Haiyun</creator><creator>Xie, Xin</creator><creator>Huang, Xianli</creator><creator>Xue, Hairong</creator><creator>Wang, Tao</creator><creator>He, Jianping</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20220531</creationdate><title>The identified intrinsic active sites for efficient and stable bi-functional catalyst N-MoS2·Ni3S2/NiS: the Mo–N structure and Ni–S structure on the heterogeneous interface synergistically enhance water splitting</title><author>Gao, Yong ; Li, Jingjing ; Gong, Hao ; Zhang, Chuanxiang ; Fan, Haiyun ; Xie, Xin ; Huang, Xianli ; Xue, Hairong ; Wang, Tao ; He, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-3ff011dfa58e460fc8a16f4ef2170e69426c05b73c7707f22db5fea5381dddcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Active sites</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Electronic structure</topic><topic>Hydrogen evolution reactions</topic><topic>Kinases</topic><topic>Molybdenum disulfide</topic><topic>Nickel sulfide</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Splitting</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yong</creatorcontrib><creatorcontrib>Li, Jingjing</creatorcontrib><creatorcontrib>Gong, Hao</creatorcontrib><creatorcontrib>Zhang, Chuanxiang</creatorcontrib><creatorcontrib>Fan, Haiyun</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Huang, Xianli</creatorcontrib><creatorcontrib>Xue, Hairong</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yong</au><au>Li, Jingjing</au><au>Gong, Hao</au><au>Zhang, Chuanxiang</au><au>Fan, Haiyun</au><au>Xie, Xin</au><au>Huang, Xianli</au><au>Xue, Hairong</au><au>Wang, Tao</au><au>He, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The identified intrinsic active sites for efficient and stable bi-functional catalyst N-MoS2·Ni3S2/NiS: the Mo–N structure and Ni–S structure on the heterogeneous interface synergistically enhance water splitting</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-05-31</date><risdate>2022</risdate><volume>10</volume><issue>21</issue><spage>11755</spage><epage>11765</epage><pages>11755-11765</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Effective analysis and identification of intrinsic active catalytic sites in composite catalysts will favor the regulation of catalyst structures, which could effectually improve their intrinsic catalytic activity and further enhance their water splitting ability. Therefore, a bi-functional composite catalyst of N-MoS2·Ni3S2/NiS with specific Mo–N structure and heterogeneous interface was rationally prepared through the self-catalysis strategy. The ultra-thin hierarchical morphology of N-MoS2·Ni3S2/NiS facilitates the exposure of active catalytic sites and the acceleration of electron transmission at the reaction interface. Furthermore, both theoretical calculations and experiments testify that the Mo–N structure and Ni–S sites on the heterogeneous interface between Ni3S2 and NiS are, respectively, specific intrinsic active catalytic sites for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), and the NiOOH formed by in situ oxidation at the interface is a synergistic catalytic site for the OER, and the doping of heteroatom N and the heterogeneous interface jointly regulate the electronic structure of N-MoS2·Ni3S2/NiS, boosting overall water splitting. The optimized catalyst, N-MoS2·Ni3S2/NiS, exhibits excellent performance; the overpotential is only 70 mV and 231 mV, respectively, for the HER and OER at 10 mA cm−2.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta01333a</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2022-05, Vol.10 (21), p.11755-11765
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2671686316
source Royal Society Of Chemistry Journals 2008-
subjects Acceleration
Active sites
Catalysis
Catalysts
Catalytic activity
Electronic structure
Hydrogen evolution reactions
Kinases
Molybdenum disulfide
Nickel sulfide
Oxidation
Oxygen evolution reactions
Splitting
Water splitting
title The identified intrinsic active sites for efficient and stable bi-functional catalyst N-MoS2·Ni3S2/NiS: the Mo–N structure and Ni–S structure on the heterogeneous interface synergistically enhance water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20identified%20intrinsic%20active%20sites%20for%20efficient%20and%20stable%20bi-functional%20catalyst%20N-MoS2%C2%B7Ni3S2/NiS:%20the%20Mo%E2%80%93N%20structure%20and%20Ni%E2%80%93S%20structure%20on%20the%20heterogeneous%20interface%20synergistically%20enhance%20water%20splitting&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Gao,%20Yong&rft.date=2022-05-31&rft.volume=10&rft.issue=21&rft.spage=11755&rft.epage=11765&rft.pages=11755-11765&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta01333a&rft_dat=%3Cproquest%3E2671686316%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671686316&rft_id=info:pmid/&rfr_iscdi=true