The identified intrinsic active sites for efficient and stable bi-functional catalyst N-MoS2·Ni3S2/NiS: the Mo–N structure and Ni–S structure on the heterogeneous interface synergistically enhance water splitting
Effective analysis and identification of intrinsic active catalytic sites in composite catalysts will favor the regulation of catalyst structures, which could effectually improve their intrinsic catalytic activity and further enhance their water splitting ability. Therefore, a bi-functional composit...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-05, Vol.10 (21), p.11755-11765 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11765 |
---|---|
container_issue | 21 |
container_start_page | 11755 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 10 |
creator | Gao, Yong Li, Jingjing Gong, Hao Zhang, Chuanxiang Fan, Haiyun Xie, Xin Huang, Xianli Xue, Hairong Wang, Tao He, Jianping |
description | Effective analysis and identification of intrinsic active catalytic sites in composite catalysts will favor the regulation of catalyst structures, which could effectually improve their intrinsic catalytic activity and further enhance their water splitting ability. Therefore, a bi-functional composite catalyst of N-MoS2·Ni3S2/NiS with specific Mo–N structure and heterogeneous interface was rationally prepared through the self-catalysis strategy. The ultra-thin hierarchical morphology of N-MoS2·Ni3S2/NiS facilitates the exposure of active catalytic sites and the acceleration of electron transmission at the reaction interface. Furthermore, both theoretical calculations and experiments testify that the Mo–N structure and Ni–S sites on the heterogeneous interface between Ni3S2 and NiS are, respectively, specific intrinsic active catalytic sites for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), and the NiOOH formed by in situ oxidation at the interface is a synergistic catalytic site for the OER, and the doping of heteroatom N and the heterogeneous interface jointly regulate the electronic structure of N-MoS2·Ni3S2/NiS, boosting overall water splitting. The optimized catalyst, N-MoS2·Ni3S2/NiS, exhibits excellent performance; the overpotential is only 70 mV and 231 mV, respectively, for the HER and OER at 10 mA cm−2. |
doi_str_mv | 10.1039/d2ta01333a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2671686316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671686316</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-3ff011dfa58e460fc8a16f4ef2170e69426c05b73c7707f22db5fea5381dddcc3</originalsourceid><addsrcrecordid>eNpNkEtKBDEQhhtRUNSNJwi4bs1jOt3tTsQXOO1ixvWQSSozJU0yJmlldt7Bw7j3Fm49ifGBWJsqfr7666eK4oDRI0ZFe2x4UpQJIdRGscNpRct61MrNv7lptov9GO9proZS2bY7xft0CQQNuIQWwRB0KaCLqInSCR-BREwQifWBgLWoMZNEOUNiUvMeyBxLO7iMeqd6olVS_Tom0pVjP-Fvrx2KCT_ucHJCUj409h_PL13eDYNOQ4Bvpw6zOPknevcNLyFB8Atw4If4FQyCVTonWjsIC4wJter7NQG3VC7rTyoTJK56TAndYq_YsqqPsP_bd4u7i_Pp2VV5c3t5fXZ6U65YI1IprKWMGauqBkaSWt0oJu0ILGc1BdmOuNS0mtdC1zWtLedmXllQlWiYMUZrsVsc_viugn8YIKbZvR9C_kaccVkz2UjBpPgEbfyHTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671686316</pqid></control><display><type>article</type><title>The identified intrinsic active sites for efficient and stable bi-functional catalyst N-MoS2·Ni3S2/NiS: the Mo–N structure and Ni–S structure on the heterogeneous interface synergistically enhance water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gao, Yong ; Li, Jingjing ; Gong, Hao ; Zhang, Chuanxiang ; Fan, Haiyun ; Xie, Xin ; Huang, Xianli ; Xue, Hairong ; Wang, Tao ; He, Jianping</creator><creatorcontrib>Gao, Yong ; Li, Jingjing ; Gong, Hao ; Zhang, Chuanxiang ; Fan, Haiyun ; Xie, Xin ; Huang, Xianli ; Xue, Hairong ; Wang, Tao ; He, Jianping</creatorcontrib><description>Effective analysis and identification of intrinsic active catalytic sites in composite catalysts will favor the regulation of catalyst structures, which could effectually improve their intrinsic catalytic activity and further enhance their water splitting ability. Therefore, a bi-functional composite catalyst of N-MoS2·Ni3S2/NiS with specific Mo–N structure and heterogeneous interface was rationally prepared through the self-catalysis strategy. The ultra-thin hierarchical morphology of N-MoS2·Ni3S2/NiS facilitates the exposure of active catalytic sites and the acceleration of electron transmission at the reaction interface. Furthermore, both theoretical calculations and experiments testify that the Mo–N structure and Ni–S sites on the heterogeneous interface between Ni3S2 and NiS are, respectively, specific intrinsic active catalytic sites for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), and the NiOOH formed by in situ oxidation at the interface is a synergistic catalytic site for the OER, and the doping of heteroatom N and the heterogeneous interface jointly regulate the electronic structure of N-MoS2·Ni3S2/NiS, boosting overall water splitting. The optimized catalyst, N-MoS2·Ni3S2/NiS, exhibits excellent performance; the overpotential is only 70 mV and 231 mV, respectively, for the HER and OER at 10 mA cm−2.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta01333a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acceleration ; Active sites ; Catalysis ; Catalysts ; Catalytic activity ; Electronic structure ; Hydrogen evolution reactions ; Kinases ; Molybdenum disulfide ; Nickel sulfide ; Oxidation ; Oxygen evolution reactions ; Splitting ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-05, Vol.10 (21), p.11755-11765</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Gao, Yong</creatorcontrib><creatorcontrib>Li, Jingjing</creatorcontrib><creatorcontrib>Gong, Hao</creatorcontrib><creatorcontrib>Zhang, Chuanxiang</creatorcontrib><creatorcontrib>Fan, Haiyun</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Huang, Xianli</creatorcontrib><creatorcontrib>Xue, Hairong</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><title>The identified intrinsic active sites for efficient and stable bi-functional catalyst N-MoS2·Ni3S2/NiS: the Mo–N structure and Ni–S structure on the heterogeneous interface synergistically enhance water splitting</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Effective analysis and identification of intrinsic active catalytic sites in composite catalysts will favor the regulation of catalyst structures, which could effectually improve their intrinsic catalytic activity and further enhance their water splitting ability. Therefore, a bi-functional composite catalyst of N-MoS2·Ni3S2/NiS with specific Mo–N structure and heterogeneous interface was rationally prepared through the self-catalysis strategy. The ultra-thin hierarchical morphology of N-MoS2·Ni3S2/NiS facilitates the exposure of active catalytic sites and the acceleration of electron transmission at the reaction interface. Furthermore, both theoretical calculations and experiments testify that the Mo–N structure and Ni–S sites on the heterogeneous interface between Ni3S2 and NiS are, respectively, specific intrinsic active catalytic sites for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), and the NiOOH formed by in situ oxidation at the interface is a synergistic catalytic site for the OER, and the doping of heteroatom N and the heterogeneous interface jointly regulate the electronic structure of N-MoS2·Ni3S2/NiS, boosting overall water splitting. The optimized catalyst, N-MoS2·Ni3S2/NiS, exhibits excellent performance; the overpotential is only 70 mV and 231 mV, respectively, for the HER and OER at 10 mA cm−2.</description><subject>Acceleration</subject><subject>Active sites</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Electronic structure</subject><subject>Hydrogen evolution reactions</subject><subject>Kinases</subject><subject>Molybdenum disulfide</subject><subject>Nickel sulfide</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Splitting</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkEtKBDEQhhtRUNSNJwi4bs1jOt3tTsQXOO1ixvWQSSozJU0yJmlldt7Bw7j3Fm49ifGBWJsqfr7666eK4oDRI0ZFe2x4UpQJIdRGscNpRct61MrNv7lptov9GO9proZS2bY7xft0CQQNuIQWwRB0KaCLqInSCR-BREwQifWBgLWoMZNEOUNiUvMeyBxLO7iMeqd6olVS_Tom0pVjP-Fvrx2KCT_ucHJCUj409h_PL13eDYNOQ4Bvpw6zOPknevcNLyFB8Atw4If4FQyCVTonWjsIC4wJter7NQG3VC7rTyoTJK56TAndYq_YsqqPsP_bd4u7i_Pp2VV5c3t5fXZ6U65YI1IprKWMGauqBkaSWt0oJu0ILGc1BdmOuNS0mtdC1zWtLedmXllQlWiYMUZrsVsc_viugn8YIKbZvR9C_kaccVkz2UjBpPgEbfyHTA</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>Gao, Yong</creator><creator>Li, Jingjing</creator><creator>Gong, Hao</creator><creator>Zhang, Chuanxiang</creator><creator>Fan, Haiyun</creator><creator>Xie, Xin</creator><creator>Huang, Xianli</creator><creator>Xue, Hairong</creator><creator>Wang, Tao</creator><creator>He, Jianping</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20220531</creationdate><title>The identified intrinsic active sites for efficient and stable bi-functional catalyst N-MoS2·Ni3S2/NiS: the Mo–N structure and Ni–S structure on the heterogeneous interface synergistically enhance water splitting</title><author>Gao, Yong ; Li, Jingjing ; Gong, Hao ; Zhang, Chuanxiang ; Fan, Haiyun ; Xie, Xin ; Huang, Xianli ; Xue, Hairong ; Wang, Tao ; He, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-3ff011dfa58e460fc8a16f4ef2170e69426c05b73c7707f22db5fea5381dddcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Active sites</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Electronic structure</topic><topic>Hydrogen evolution reactions</topic><topic>Kinases</topic><topic>Molybdenum disulfide</topic><topic>Nickel sulfide</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Splitting</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yong</creatorcontrib><creatorcontrib>Li, Jingjing</creatorcontrib><creatorcontrib>Gong, Hao</creatorcontrib><creatorcontrib>Zhang, Chuanxiang</creatorcontrib><creatorcontrib>Fan, Haiyun</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Huang, Xianli</creatorcontrib><creatorcontrib>Xue, Hairong</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>He, Jianping</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yong</au><au>Li, Jingjing</au><au>Gong, Hao</au><au>Zhang, Chuanxiang</au><au>Fan, Haiyun</au><au>Xie, Xin</au><au>Huang, Xianli</au><au>Xue, Hairong</au><au>Wang, Tao</au><au>He, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The identified intrinsic active sites for efficient and stable bi-functional catalyst N-MoS2·Ni3S2/NiS: the Mo–N structure and Ni–S structure on the heterogeneous interface synergistically enhance water splitting</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-05-31</date><risdate>2022</risdate><volume>10</volume><issue>21</issue><spage>11755</spage><epage>11765</epage><pages>11755-11765</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Effective analysis and identification of intrinsic active catalytic sites in composite catalysts will favor the regulation of catalyst structures, which could effectually improve their intrinsic catalytic activity and further enhance their water splitting ability. Therefore, a bi-functional composite catalyst of N-MoS2·Ni3S2/NiS with specific Mo–N structure and heterogeneous interface was rationally prepared through the self-catalysis strategy. The ultra-thin hierarchical morphology of N-MoS2·Ni3S2/NiS facilitates the exposure of active catalytic sites and the acceleration of electron transmission at the reaction interface. Furthermore, both theoretical calculations and experiments testify that the Mo–N structure and Ni–S sites on the heterogeneous interface between Ni3S2 and NiS are, respectively, specific intrinsic active catalytic sites for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), and the NiOOH formed by in situ oxidation at the interface is a synergistic catalytic site for the OER, and the doping of heteroatom N and the heterogeneous interface jointly regulate the electronic structure of N-MoS2·Ni3S2/NiS, boosting overall water splitting. The optimized catalyst, N-MoS2·Ni3S2/NiS, exhibits excellent performance; the overpotential is only 70 mV and 231 mV, respectively, for the HER and OER at 10 mA cm−2.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta01333a</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-05, Vol.10 (21), p.11755-11765 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2671686316 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Acceleration Active sites Catalysis Catalysts Catalytic activity Electronic structure Hydrogen evolution reactions Kinases Molybdenum disulfide Nickel sulfide Oxidation Oxygen evolution reactions Splitting Water splitting |
title | The identified intrinsic active sites for efficient and stable bi-functional catalyst N-MoS2·Ni3S2/NiS: the Mo–N structure and Ni–S structure on the heterogeneous interface synergistically enhance water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20identified%20intrinsic%20active%20sites%20for%20efficient%20and%20stable%20bi-functional%20catalyst%20N-MoS2%C2%B7Ni3S2/NiS:%20the%20Mo%E2%80%93N%20structure%20and%20Ni%E2%80%93S%20structure%20on%20the%20heterogeneous%20interface%20synergistically%20enhance%20water%20splitting&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Gao,%20Yong&rft.date=2022-05-31&rft.volume=10&rft.issue=21&rft.spage=11755&rft.epage=11765&rft.pages=11755-11765&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta01333a&rft_dat=%3Cproquest%3E2671686316%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671686316&rft_id=info:pmid/&rfr_iscdi=true |