Probabilistic linguistic WASPAS method for patients’ prioritization by developing prioritized Maclaurin symmetric mean aggregation operators

Due to the fuzziness of healthcare, the probabilistic linguistic term set (PLTS) is the appropriate technique to assist health experts express their evaluations in the patient prioritization problem. This paper proposes a new method based on the integration of prioritized averaging (PA) and Maclauri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2022-06, Vol.52 (8), p.9537-9555
Hauptverfasser: Darko, Adjei Peter, Liang, Decui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9555
container_issue 8
container_start_page 9537
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 52
creator Darko, Adjei Peter
Liang, Decui
description Due to the fuzziness of healthcare, the probabilistic linguistic term set (PLTS) is the appropriate technique to assist health experts express their evaluations in the patient prioritization problem. This paper proposes a new method based on the integration of prioritized averaging (PA) and Maclaurin symmetric mean (MSM) operator within the probabilistic linguistic environment. According to the prioritization relationship of the experts and the criteria set, we employ the PA to define the priority degrees. Keeping to the merits of the PA and MSM operators, we develop some novel aggregation operators for probabilistic linguistic information. Particularly, we develop the probabilistic linguistic prioritized Maclaurin symmetric mean (PLPMSM) and probabilistic linguistic prioritized dual Maclaurin symmetric mean (PLPDMSM) operators. Some accompanying properties and useful remarks of these operators are examined. Moreover, we formulate a new ranking procedure for probabilistic linguistic multi-criteria group decision making (PLMCGDM) based on the extended WASPAS method. A patients’ prioritization problem is analyzed to depict the usefulness and robustness of the proposed method.
doi_str_mv 10.1007/s10489-021-02807-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671453896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671453896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f7198dedeab0915ce5809ec976a7d6bb3e7b1ded60fe0674ac7dbf13bae380483</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gKuA62rStE2zHAb_YMQBFd2FpL2tGdqmJh1hXPkE7n09n8Rohdm5CAm533dCDkLHlJxSQviZpyTJRURiGlZOeMR20ISmnEU8EXwXTYiIkyjLxNM-OvB-RQhhjNAJ-lg6q5U2jfGDKXBjuno9Hh9nd8vZHW5heLYlrqzDvRoMdIP_ev_EvTPWmcG8hTvbYb3BJbxCY_sA2A6hxDeqaNTamQ77TRtgLqBbUB1Wde2gHuu2B6cG6_wh2qtU4-Hob5-ih4vz-_lVtLi9vJ7PFlHBqBiiilORl1CC0kTQtIA0JwIKwTPFy0xrBlzTMM9IBSTjiSp4qSvKtAKWB1Nsik5Gbu_syxr8IFd27brwpIwzTpOU5SILqXhMFc5676CS4WetchtJifzxLkfvMniXv94lCyU2lnwIdzW4Lfqf1jcGqIwO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671453896</pqid></control><display><type>article</type><title>Probabilistic linguistic WASPAS method for patients’ prioritization by developing prioritized Maclaurin symmetric mean aggregation operators</title><source>SpringerNature Journals</source><creator>Darko, Adjei Peter ; Liang, Decui</creator><creatorcontrib>Darko, Adjei Peter ; Liang, Decui</creatorcontrib><description>Due to the fuzziness of healthcare, the probabilistic linguistic term set (PLTS) is the appropriate technique to assist health experts express their evaluations in the patient prioritization problem. This paper proposes a new method based on the integration of prioritized averaging (PA) and Maclaurin symmetric mean (MSM) operator within the probabilistic linguistic environment. According to the prioritization relationship of the experts and the criteria set, we employ the PA to define the priority degrees. Keeping to the merits of the PA and MSM operators, we develop some novel aggregation operators for probabilistic linguistic information. Particularly, we develop the probabilistic linguistic prioritized Maclaurin symmetric mean (PLPMSM) and probabilistic linguistic prioritized dual Maclaurin symmetric mean (PLPDMSM) operators. Some accompanying properties and useful remarks of these operators are examined. Moreover, we formulate a new ranking procedure for probabilistic linguistic multi-criteria group decision making (PLMCGDM) based on the extended WASPAS method. A patients’ prioritization problem is analyzed to depict the usefulness and robustness of the proposed method.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-021-02807-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agglomeration ; Artificial Intelligence ; Computer Science ; Decision making ; Linguistics ; Machines ; Manufacturing ; Mechanical Engineering ; Multiple criterion ; Operators ; Patients ; Probability theory ; Processes</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2022-06, Vol.52 (8), p.9537-9555</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f7198dedeab0915ce5809ec976a7d6bb3e7b1ded60fe0674ac7dbf13bae380483</citedby><cites>FETCH-LOGICAL-c319t-f7198dedeab0915ce5809ec976a7d6bb3e7b1ded60fe0674ac7dbf13bae380483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-021-02807-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-021-02807-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Darko, Adjei Peter</creatorcontrib><creatorcontrib>Liang, Decui</creatorcontrib><title>Probabilistic linguistic WASPAS method for patients’ prioritization by developing prioritized Maclaurin symmetric mean aggregation operators</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Due to the fuzziness of healthcare, the probabilistic linguistic term set (PLTS) is the appropriate technique to assist health experts express their evaluations in the patient prioritization problem. This paper proposes a new method based on the integration of prioritized averaging (PA) and Maclaurin symmetric mean (MSM) operator within the probabilistic linguistic environment. According to the prioritization relationship of the experts and the criteria set, we employ the PA to define the priority degrees. Keeping to the merits of the PA and MSM operators, we develop some novel aggregation operators for probabilistic linguistic information. Particularly, we develop the probabilistic linguistic prioritized Maclaurin symmetric mean (PLPMSM) and probabilistic linguistic prioritized dual Maclaurin symmetric mean (PLPDMSM) operators. Some accompanying properties and useful remarks of these operators are examined. Moreover, we formulate a new ranking procedure for probabilistic linguistic multi-criteria group decision making (PLMCGDM) based on the extended WASPAS method. A patients’ prioritization problem is analyzed to depict the usefulness and robustness of the proposed method.</description><subject>Agglomeration</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Decision making</subject><subject>Linguistics</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Multiple criterion</subject><subject>Operators</subject><subject>Patients</subject><subject>Probability theory</subject><subject>Processes</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KxDAURoMoOI6-gKuA62rStE2zHAb_YMQBFd2FpL2tGdqmJh1hXPkE7n09n8Rohdm5CAm533dCDkLHlJxSQviZpyTJRURiGlZOeMR20ISmnEU8EXwXTYiIkyjLxNM-OvB-RQhhjNAJ-lg6q5U2jfGDKXBjuno9Hh9nd8vZHW5heLYlrqzDvRoMdIP_ev_EvTPWmcG8hTvbYb3BJbxCY_sA2A6hxDeqaNTamQ77TRtgLqBbUB1Wde2gHuu2B6cG6_wh2qtU4-Hob5-ih4vz-_lVtLi9vJ7PFlHBqBiiilORl1CC0kTQtIA0JwIKwTPFy0xrBlzTMM9IBSTjiSp4qSvKtAKWB1Nsik5Gbu_syxr8IFd27brwpIwzTpOU5SILqXhMFc5676CS4WetchtJifzxLkfvMniXv94lCyU2lnwIdzW4Lfqf1jcGqIwO</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Darko, Adjei Peter</creator><creator>Liang, Decui</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7T9</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220601</creationdate><title>Probabilistic linguistic WASPAS method for patients’ prioritization by developing prioritized Maclaurin symmetric mean aggregation operators</title><author>Darko, Adjei Peter ; Liang, Decui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f7198dedeab0915ce5809ec976a7d6bb3e7b1ded60fe0674ac7dbf13bae380483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agglomeration</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Decision making</topic><topic>Linguistics</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Multiple criterion</topic><topic>Operators</topic><topic>Patients</topic><topic>Probability theory</topic><topic>Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darko, Adjei Peter</creatorcontrib><creatorcontrib>Liang, Decui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darko, Adjei Peter</au><au>Liang, Decui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic linguistic WASPAS method for patients’ prioritization by developing prioritized Maclaurin symmetric mean aggregation operators</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>52</volume><issue>8</issue><spage>9537</spage><epage>9555</epage><pages>9537-9555</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Due to the fuzziness of healthcare, the probabilistic linguistic term set (PLTS) is the appropriate technique to assist health experts express their evaluations in the patient prioritization problem. This paper proposes a new method based on the integration of prioritized averaging (PA) and Maclaurin symmetric mean (MSM) operator within the probabilistic linguistic environment. According to the prioritization relationship of the experts and the criteria set, we employ the PA to define the priority degrees. Keeping to the merits of the PA and MSM operators, we develop some novel aggregation operators for probabilistic linguistic information. Particularly, we develop the probabilistic linguistic prioritized Maclaurin symmetric mean (PLPMSM) and probabilistic linguistic prioritized dual Maclaurin symmetric mean (PLPDMSM) operators. Some accompanying properties and useful remarks of these operators are examined. Moreover, we formulate a new ranking procedure for probabilistic linguistic multi-criteria group decision making (PLMCGDM) based on the extended WASPAS method. A patients’ prioritization problem is analyzed to depict the usefulness and robustness of the proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-021-02807-3</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2022-06, Vol.52 (8), p.9537-9555
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2671453896
source SpringerNature Journals
subjects Agglomeration
Artificial Intelligence
Computer Science
Decision making
Linguistics
Machines
Manufacturing
Mechanical Engineering
Multiple criterion
Operators
Patients
Probability theory
Processes
title Probabilistic linguistic WASPAS method for patients’ prioritization by developing prioritized Maclaurin symmetric mean aggregation operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A21%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20linguistic%20WASPAS%20method%20for%20patients%E2%80%99%20prioritization%20by%20developing%20prioritized%20Maclaurin%20symmetric%20mean%20aggregation%20operators&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Darko,%20Adjei%20Peter&rft.date=2022-06-01&rft.volume=52&rft.issue=8&rft.spage=9537&rft.epage=9555&rft.pages=9537-9555&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-021-02807-3&rft_dat=%3Cproquest_cross%3E2671453896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671453896&rft_id=info:pmid/&rfr_iscdi=true