Adaptive signal-correction-based identification for friction perception of the vibration-driven limbless robot
Friction determines the locomotion performance of the limbless robot. However, most sensors cannot measure the friction precisely because the invasive assembly will change the contact feature between the robot and the ground. This paper, in another way, proposes a novel method that only uses the acc...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2022-06, Vol.108 (4), p.3817-3837 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3837 |
---|---|
container_issue | 4 |
container_start_page | 3817 |
container_title | Nonlinear dynamics |
container_volume | 108 |
creator | Wang, Siyi Diao, Binbin Zhang, Xiaoxu Xu, Jian Chen, Lifen |
description | Friction determines the locomotion performance of the limbless robot. However, most sensors cannot measure the friction precisely because the invasive assembly will change the contact feature between the robot and the ground. This paper, in another way, proposes a novel method that only uses the acceleration signal to realize the accurate identification of friction and structure parameters. Note that the friction force and the structural coupling are functions of velocity and displacement. The proposed method first introduces two constant coefficients to construct a linear algebraic transform, which maps the measured acceleration to the uncertain velocity and displacement in the orthonormal polynomial space. The introduced two coefficients are then identified together with the friction and structure parameters via particle swarm optimization. Because the identification is integrated with coefficient correction of uncertain velocity and displacement, this architecture is called the adaptive signal-correction-based identification. Numerical and experimental examples suggest that if the polynomial order makes the signal correlation larger than 0.98 and the time-window width is approximately one oscillation period, the proposed method possesses a high identification accuracy. Further robustness discussions on the parameter uncertainty and noise disturbance demonstrate that the identification architecture also owns good reliability for engineering applications. |
doi_str_mv | 10.1007/s11071-022-07392-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671453320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671453320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2efd87120db5af06ebb3f0a774d4d8c620f7378c225af0744650c9feff27170d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQmmZlMlqX4goIbhe5CJo-aMp2MybTgv3faEdy5upd7v3PgHIRuKdxTAPGQKQVBCTBGQHDJiDxDM1oKTlgl1-doBpIVBCSsL9FVzlsA4AzqGeoWVvdDODicw6bTLTExJWeGEDvS6OwsDtZ1Q_DB6OMR-5iwT-FE4N4l4_rTGj0ePh0-hCadQGLT6NrhNuya1uWMU2zicI0uvG6zu_mdc_Tx9Pi-fCGrt-fX5WJFDKdyIMx5WwvKwDal9lC5puEetBCFLWxtKgZecFEbxo5vURRVCUZ65z0TVIDlc3Q3-fYpfu1dHtQ27tOYLytWCVqUfIw_UmyiTIo5J-dVn8JOp29FQR17VVOvauxVnXpVchTxSZRHuNu49Gf9j-oHh1R9sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671453320</pqid></control><display><type>article</type><title>Adaptive signal-correction-based identification for friction perception of the vibration-driven limbless robot</title><source>SpringerNature Journals</source><creator>Wang, Siyi ; Diao, Binbin ; Zhang, Xiaoxu ; Xu, Jian ; Chen, Lifen</creator><creatorcontrib>Wang, Siyi ; Diao, Binbin ; Zhang, Xiaoxu ; Xu, Jian ; Chen, Lifen</creatorcontrib><description>Friction determines the locomotion performance of the limbless robot. However, most sensors cannot measure the friction precisely because the invasive assembly will change the contact feature between the robot and the ground. This paper, in another way, proposes a novel method that only uses the acceleration signal to realize the accurate identification of friction and structure parameters. Note that the friction force and the structural coupling are functions of velocity and displacement. The proposed method first introduces two constant coefficients to construct a linear algebraic transform, which maps the measured acceleration to the uncertain velocity and displacement in the orthonormal polynomial space. The introduced two coefficients are then identified together with the friction and structure parameters via particle swarm optimization. Because the identification is integrated with coefficient correction of uncertain velocity and displacement, this architecture is called the adaptive signal-correction-based identification. Numerical and experimental examples suggest that if the polynomial order makes the signal correlation larger than 0.98 and the time-window width is approximately one oscillation period, the proposed method possesses a high identification accuracy. Further robustness discussions on the parameter uncertainty and noise disturbance demonstrate that the identification architecture also owns good reliability for engineering applications.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-022-07392-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acceleration measurement ; Accelerometers ; Automotive Engineering ; Classical Mechanics ; Control ; Displacement ; Dynamical Systems ; Engineering ; Friction ; Linear algebra ; Locomotion ; Mechanical Engineering ; Original Paper ; Parameter identification ; Parameter uncertainty ; Particle swarm optimization ; Polynomials ; Reliability engineering ; Robot dynamics ; Robots ; Robustness (mathematics) ; Vibration ; Vibration perception</subject><ispartof>Nonlinear dynamics, 2022-06, Vol.108 (4), p.3817-3837</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2efd87120db5af06ebb3f0a774d4d8c620f7378c225af0744650c9feff27170d3</citedby><cites>FETCH-LOGICAL-c319t-2efd87120db5af06ebb3f0a774d4d8c620f7378c225af0744650c9feff27170d3</cites><orcidid>0000-0002-8543-9922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-022-07392-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-022-07392-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Siyi</creatorcontrib><creatorcontrib>Diao, Binbin</creatorcontrib><creatorcontrib>Zhang, Xiaoxu</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Chen, Lifen</creatorcontrib><title>Adaptive signal-correction-based identification for friction perception of the vibration-driven limbless robot</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Friction determines the locomotion performance of the limbless robot. However, most sensors cannot measure the friction precisely because the invasive assembly will change the contact feature between the robot and the ground. This paper, in another way, proposes a novel method that only uses the acceleration signal to realize the accurate identification of friction and structure parameters. Note that the friction force and the structural coupling are functions of velocity and displacement. The proposed method first introduces two constant coefficients to construct a linear algebraic transform, which maps the measured acceleration to the uncertain velocity and displacement in the orthonormal polynomial space. The introduced two coefficients are then identified together with the friction and structure parameters via particle swarm optimization. Because the identification is integrated with coefficient correction of uncertain velocity and displacement, this architecture is called the adaptive signal-correction-based identification. Numerical and experimental examples suggest that if the polynomial order makes the signal correlation larger than 0.98 and the time-window width is approximately one oscillation period, the proposed method possesses a high identification accuracy. Further robustness discussions on the parameter uncertainty and noise disturbance demonstrate that the identification architecture also owns good reliability for engineering applications.</description><subject>Acceleration measurement</subject><subject>Accelerometers</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Displacement</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Friction</subject><subject>Linear algebra</subject><subject>Locomotion</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Particle swarm optimization</subject><subject>Polynomials</subject><subject>Reliability engineering</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Robustness (mathematics)</subject><subject>Vibration</subject><subject>Vibration perception</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQmmZlMlqX4goIbhe5CJo-aMp2MybTgv3faEdy5upd7v3PgHIRuKdxTAPGQKQVBCTBGQHDJiDxDM1oKTlgl1-doBpIVBCSsL9FVzlsA4AzqGeoWVvdDODicw6bTLTExJWeGEDvS6OwsDtZ1Q_DB6OMR-5iwT-FE4N4l4_rTGj0ePh0-hCadQGLT6NrhNuya1uWMU2zicI0uvG6zu_mdc_Tx9Pi-fCGrt-fX5WJFDKdyIMx5WwvKwDal9lC5puEetBCFLWxtKgZecFEbxo5vURRVCUZ65z0TVIDlc3Q3-fYpfu1dHtQ27tOYLytWCVqUfIw_UmyiTIo5J-dVn8JOp29FQR17VVOvauxVnXpVchTxSZRHuNu49Gf9j-oHh1R9sg</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Wang, Siyi</creator><creator>Diao, Binbin</creator><creator>Zhang, Xiaoxu</creator><creator>Xu, Jian</creator><creator>Chen, Lifen</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8543-9922</orcidid></search><sort><creationdate>20220601</creationdate><title>Adaptive signal-correction-based identification for friction perception of the vibration-driven limbless robot</title><author>Wang, Siyi ; Diao, Binbin ; Zhang, Xiaoxu ; Xu, Jian ; Chen, Lifen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2efd87120db5af06ebb3f0a774d4d8c620f7378c225af0744650c9feff27170d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration measurement</topic><topic>Accelerometers</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Displacement</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Friction</topic><topic>Linear algebra</topic><topic>Locomotion</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Particle swarm optimization</topic><topic>Polynomials</topic><topic>Reliability engineering</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Robustness (mathematics)</topic><topic>Vibration</topic><topic>Vibration perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Siyi</creatorcontrib><creatorcontrib>Diao, Binbin</creatorcontrib><creatorcontrib>Zhang, Xiaoxu</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Chen, Lifen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Siyi</au><au>Diao, Binbin</au><au>Zhang, Xiaoxu</au><au>Xu, Jian</au><au>Chen, Lifen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive signal-correction-based identification for friction perception of the vibration-driven limbless robot</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>108</volume><issue>4</issue><spage>3817</spage><epage>3837</epage><pages>3817-3837</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Friction determines the locomotion performance of the limbless robot. However, most sensors cannot measure the friction precisely because the invasive assembly will change the contact feature between the robot and the ground. This paper, in another way, proposes a novel method that only uses the acceleration signal to realize the accurate identification of friction and structure parameters. Note that the friction force and the structural coupling are functions of velocity and displacement. The proposed method first introduces two constant coefficients to construct a linear algebraic transform, which maps the measured acceleration to the uncertain velocity and displacement in the orthonormal polynomial space. The introduced two coefficients are then identified together with the friction and structure parameters via particle swarm optimization. Because the identification is integrated with coefficient correction of uncertain velocity and displacement, this architecture is called the adaptive signal-correction-based identification. Numerical and experimental examples suggest that if the polynomial order makes the signal correlation larger than 0.98 and the time-window width is approximately one oscillation period, the proposed method possesses a high identification accuracy. Further robustness discussions on the parameter uncertainty and noise disturbance demonstrate that the identification architecture also owns good reliability for engineering applications.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-022-07392-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8543-9922</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2022-06, Vol.108 (4), p.3817-3837 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2671453320 |
source | SpringerNature Journals |
subjects | Acceleration measurement Accelerometers Automotive Engineering Classical Mechanics Control Displacement Dynamical Systems Engineering Friction Linear algebra Locomotion Mechanical Engineering Original Paper Parameter identification Parameter uncertainty Particle swarm optimization Polynomials Reliability engineering Robot dynamics Robots Robustness (mathematics) Vibration Vibration perception |
title | Adaptive signal-correction-based identification for friction perception of the vibration-driven limbless robot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20signal-correction-based%20identification%20for%20friction%20perception%20of%20the%20vibration-driven%20limbless%20robot&rft.jtitle=Nonlinear%20dynamics&rft.au=Wang,%20Siyi&rft.date=2022-06-01&rft.volume=108&rft.issue=4&rft.spage=3817&rft.epage=3837&rft.pages=3817-3837&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-022-07392-9&rft_dat=%3Cproquest_cross%3E2671453320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671453320&rft_id=info:pmid/&rfr_iscdi=true |