Adaptive signal-correction-based identification for friction perception of the vibration-driven limbless robot

Friction determines the locomotion performance of the limbless robot. However, most sensors cannot measure the friction precisely because the invasive assembly will change the contact feature between the robot and the ground. This paper, in another way, proposes a novel method that only uses the acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2022-06, Vol.108 (4), p.3817-3837
Hauptverfasser: Wang, Siyi, Diao, Binbin, Zhang, Xiaoxu, Xu, Jian, Chen, Lifen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3837
container_issue 4
container_start_page 3817
container_title Nonlinear dynamics
container_volume 108
creator Wang, Siyi
Diao, Binbin
Zhang, Xiaoxu
Xu, Jian
Chen, Lifen
description Friction determines the locomotion performance of the limbless robot. However, most sensors cannot measure the friction precisely because the invasive assembly will change the contact feature between the robot and the ground. This paper, in another way, proposes a novel method that only uses the acceleration signal to realize the accurate identification of friction and structure parameters. Note that the friction force and the structural coupling are functions of velocity and displacement. The proposed method first introduces two constant coefficients to construct a linear algebraic transform, which maps the measured acceleration to the uncertain velocity and displacement in the orthonormal polynomial space. The introduced two coefficients are then identified together with the friction and structure parameters via particle swarm optimization. Because the identification is integrated with coefficient correction of uncertain velocity and displacement, this architecture is called the adaptive signal-correction-based identification. Numerical and experimental examples suggest that if the polynomial order makes the signal correlation larger than 0.98 and the time-window width is approximately one oscillation period, the proposed method possesses a high identification accuracy. Further robustness discussions on the parameter uncertainty and noise disturbance demonstrate that the identification architecture also owns good reliability for engineering applications.
doi_str_mv 10.1007/s11071-022-07392-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671453320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671453320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2efd87120db5af06ebb3f0a774d4d8c620f7378c225af0744650c9feff27170d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQmmZlMlqX4goIbhe5CJo-aMp2MybTgv3faEdy5upd7v3PgHIRuKdxTAPGQKQVBCTBGQHDJiDxDM1oKTlgl1-doBpIVBCSsL9FVzlsA4AzqGeoWVvdDODicw6bTLTExJWeGEDvS6OwsDtZ1Q_DB6OMR-5iwT-FE4N4l4_rTGj0ePh0-hCadQGLT6NrhNuya1uWMU2zicI0uvG6zu_mdc_Tx9Pi-fCGrt-fX5WJFDKdyIMx5WwvKwDal9lC5puEetBCFLWxtKgZecFEbxo5vURRVCUZ65z0TVIDlc3Q3-fYpfu1dHtQ27tOYLytWCVqUfIw_UmyiTIo5J-dVn8JOp29FQR17VVOvauxVnXpVchTxSZRHuNu49Gf9j-oHh1R9sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671453320</pqid></control><display><type>article</type><title>Adaptive signal-correction-based identification for friction perception of the vibration-driven limbless robot</title><source>SpringerNature Journals</source><creator>Wang, Siyi ; Diao, Binbin ; Zhang, Xiaoxu ; Xu, Jian ; Chen, Lifen</creator><creatorcontrib>Wang, Siyi ; Diao, Binbin ; Zhang, Xiaoxu ; Xu, Jian ; Chen, Lifen</creatorcontrib><description>Friction determines the locomotion performance of the limbless robot. However, most sensors cannot measure the friction precisely because the invasive assembly will change the contact feature between the robot and the ground. This paper, in another way, proposes a novel method that only uses the acceleration signal to realize the accurate identification of friction and structure parameters. Note that the friction force and the structural coupling are functions of velocity and displacement. The proposed method first introduces two constant coefficients to construct a linear algebraic transform, which maps the measured acceleration to the uncertain velocity and displacement in the orthonormal polynomial space. The introduced two coefficients are then identified together with the friction and structure parameters via particle swarm optimization. Because the identification is integrated with coefficient correction of uncertain velocity and displacement, this architecture is called the adaptive signal-correction-based identification. Numerical and experimental examples suggest that if the polynomial order makes the signal correlation larger than 0.98 and the time-window width is approximately one oscillation period, the proposed method possesses a high identification accuracy. Further robustness discussions on the parameter uncertainty and noise disturbance demonstrate that the identification architecture also owns good reliability for engineering applications.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-022-07392-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acceleration measurement ; Accelerometers ; Automotive Engineering ; Classical Mechanics ; Control ; Displacement ; Dynamical Systems ; Engineering ; Friction ; Linear algebra ; Locomotion ; Mechanical Engineering ; Original Paper ; Parameter identification ; Parameter uncertainty ; Particle swarm optimization ; Polynomials ; Reliability engineering ; Robot dynamics ; Robots ; Robustness (mathematics) ; Vibration ; Vibration perception</subject><ispartof>Nonlinear dynamics, 2022-06, Vol.108 (4), p.3817-3837</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2efd87120db5af06ebb3f0a774d4d8c620f7378c225af0744650c9feff27170d3</citedby><cites>FETCH-LOGICAL-c319t-2efd87120db5af06ebb3f0a774d4d8c620f7378c225af0744650c9feff27170d3</cites><orcidid>0000-0002-8543-9922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-022-07392-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-022-07392-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Siyi</creatorcontrib><creatorcontrib>Diao, Binbin</creatorcontrib><creatorcontrib>Zhang, Xiaoxu</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Chen, Lifen</creatorcontrib><title>Adaptive signal-correction-based identification for friction perception of the vibration-driven limbless robot</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Friction determines the locomotion performance of the limbless robot. However, most sensors cannot measure the friction precisely because the invasive assembly will change the contact feature between the robot and the ground. This paper, in another way, proposes a novel method that only uses the acceleration signal to realize the accurate identification of friction and structure parameters. Note that the friction force and the structural coupling are functions of velocity and displacement. The proposed method first introduces two constant coefficients to construct a linear algebraic transform, which maps the measured acceleration to the uncertain velocity and displacement in the orthonormal polynomial space. The introduced two coefficients are then identified together with the friction and structure parameters via particle swarm optimization. Because the identification is integrated with coefficient correction of uncertain velocity and displacement, this architecture is called the adaptive signal-correction-based identification. Numerical and experimental examples suggest that if the polynomial order makes the signal correlation larger than 0.98 and the time-window width is approximately one oscillation period, the proposed method possesses a high identification accuracy. Further robustness discussions on the parameter uncertainty and noise disturbance demonstrate that the identification architecture also owns good reliability for engineering applications.</description><subject>Acceleration measurement</subject><subject>Accelerometers</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Displacement</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Friction</subject><subject>Linear algebra</subject><subject>Locomotion</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Particle swarm optimization</subject><subject>Polynomials</subject><subject>Reliability engineering</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Robustness (mathematics)</subject><subject>Vibration</subject><subject>Vibration perception</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQmmZlMlqX4goIbhe5CJo-aMp2MybTgv3faEdy5upd7v3PgHIRuKdxTAPGQKQVBCTBGQHDJiDxDM1oKTlgl1-doBpIVBCSsL9FVzlsA4AzqGeoWVvdDODicw6bTLTExJWeGEDvS6OwsDtZ1Q_DB6OMR-5iwT-FE4N4l4_rTGj0ePh0-hCadQGLT6NrhNuya1uWMU2zicI0uvG6zu_mdc_Tx9Pi-fCGrt-fX5WJFDKdyIMx5WwvKwDal9lC5puEetBCFLWxtKgZecFEbxo5vURRVCUZ65z0TVIDlc3Q3-fYpfu1dHtQ27tOYLytWCVqUfIw_UmyiTIo5J-dVn8JOp29FQR17VVOvauxVnXpVchTxSZRHuNu49Gf9j-oHh1R9sg</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Wang, Siyi</creator><creator>Diao, Binbin</creator><creator>Zhang, Xiaoxu</creator><creator>Xu, Jian</creator><creator>Chen, Lifen</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8543-9922</orcidid></search><sort><creationdate>20220601</creationdate><title>Adaptive signal-correction-based identification for friction perception of the vibration-driven limbless robot</title><author>Wang, Siyi ; Diao, Binbin ; Zhang, Xiaoxu ; Xu, Jian ; Chen, Lifen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2efd87120db5af06ebb3f0a774d4d8c620f7378c225af0744650c9feff27170d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration measurement</topic><topic>Accelerometers</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Displacement</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Friction</topic><topic>Linear algebra</topic><topic>Locomotion</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Particle swarm optimization</topic><topic>Polynomials</topic><topic>Reliability engineering</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Robustness (mathematics)</topic><topic>Vibration</topic><topic>Vibration perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Siyi</creatorcontrib><creatorcontrib>Diao, Binbin</creatorcontrib><creatorcontrib>Zhang, Xiaoxu</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Chen, Lifen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Siyi</au><au>Diao, Binbin</au><au>Zhang, Xiaoxu</au><au>Xu, Jian</au><au>Chen, Lifen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive signal-correction-based identification for friction perception of the vibration-driven limbless robot</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>108</volume><issue>4</issue><spage>3817</spage><epage>3837</epage><pages>3817-3837</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Friction determines the locomotion performance of the limbless robot. However, most sensors cannot measure the friction precisely because the invasive assembly will change the contact feature between the robot and the ground. This paper, in another way, proposes a novel method that only uses the acceleration signal to realize the accurate identification of friction and structure parameters. Note that the friction force and the structural coupling are functions of velocity and displacement. The proposed method first introduces two constant coefficients to construct a linear algebraic transform, which maps the measured acceleration to the uncertain velocity and displacement in the orthonormal polynomial space. The introduced two coefficients are then identified together with the friction and structure parameters via particle swarm optimization. Because the identification is integrated with coefficient correction of uncertain velocity and displacement, this architecture is called the adaptive signal-correction-based identification. Numerical and experimental examples suggest that if the polynomial order makes the signal correlation larger than 0.98 and the time-window width is approximately one oscillation period, the proposed method possesses a high identification accuracy. Further robustness discussions on the parameter uncertainty and noise disturbance demonstrate that the identification architecture also owns good reliability for engineering applications.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-022-07392-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8543-9922</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2022-06, Vol.108 (4), p.3817-3837
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2671453320
source SpringerNature Journals
subjects Acceleration measurement
Accelerometers
Automotive Engineering
Classical Mechanics
Control
Displacement
Dynamical Systems
Engineering
Friction
Linear algebra
Locomotion
Mechanical Engineering
Original Paper
Parameter identification
Parameter uncertainty
Particle swarm optimization
Polynomials
Reliability engineering
Robot dynamics
Robots
Robustness (mathematics)
Vibration
Vibration perception
title Adaptive signal-correction-based identification for friction perception of the vibration-driven limbless robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20signal-correction-based%20identification%20for%20friction%20perception%20of%20the%20vibration-driven%20limbless%20robot&rft.jtitle=Nonlinear%20dynamics&rft.au=Wang,%20Siyi&rft.date=2022-06-01&rft.volume=108&rft.issue=4&rft.spage=3817&rft.epage=3837&rft.pages=3817-3837&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-022-07392-9&rft_dat=%3Cproquest_cross%3E2671453320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671453320&rft_id=info:pmid/&rfr_iscdi=true