Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system

The nonlinear dynamic model of the non-orthogonal face gear-rotor-bearing system was established considering the nonlinear features associated with time-varying meshing stiffness, transmission error, tooth backlash, bearing clearance, and collision force and friction between tooth. The influence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2022-06, Vol.108 (4), p.3367-3389
Hauptverfasser: Shuai, Mo, Yingxin, Zhang, Yuling, Song, Wenhao, Song, Yunsheng, Huang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3389
container_issue 4
container_start_page 3367
container_title Nonlinear dynamics
container_volume 108
creator Shuai, Mo
Yingxin, Zhang
Yuling, Song
Wenhao, Song
Yunsheng, Huang
description The nonlinear dynamic model of the non-orthogonal face gear-rotor-bearing system was established considering the nonlinear features associated with time-varying meshing stiffness, transmission error, tooth backlash, bearing clearance, and collision force and friction between tooth. The influence of the excitation frequency, friction coefficient, and support stiffness on the dynamic characteristic of the system is described by the time history, FFT spectrum, phase plane, Poincaré map, and bifurcation diagram. In addition, the multiple-scale method is used to analyze the primary resonance characteristics and determine the stability conditions of the system. The effects of meshing damping, time-varying meshing stiffness, and load on the primary resonance of the system are studied by numerical methods. The results reveal that the non-orthogonal gear-rotor-bearing transmission system exhibits a variety of nonlinear characteristics, and the parameters of the system should be controlled to ensure the stability of the system and prevent the mutation of amplitude.
doi_str_mv 10.1007/s11071-022-07432-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671450836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671450836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-66b0db655cca5d1b8fd460da64ae7ec8c4b2fc3a214722a6542eae9682613c6f3</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrf6Aq4Dr6M1jkpmlFF9QdKPQXchkMuOUaVKTqdC_N3UK7lzdyz0P7jkIXVO4pQDqLlEKihJgjIASnBFxgma0UJwwWa1O0QwqJghUsDpHFymtAYAzKGfIvgY_9N6ZiL_7OpqxDx4b3-Bt7Dcm7nF0KXjjrctXM-xTn3BosQ-ehDh-hi6DA25NxrtsQmIYQyR1Xnvf4bRPo9tcorPWDMldHeccfTw-vC-eyfLt6WVxvySW02okUtbQ1LIorDVFQ-uybYSExkhhnHK2tKJmreWGUaEYM7IQzBlXyZJJyq1s-RzdTL7bGL52Lo16HXYx_5c0k4qKAkouM4tNLBtDStG1-hhVU9CHMvVUps5l6t8ytcgiPonS9hDMxT_rf1Q_EUh5eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671450836</pqid></control><display><type>article</type><title>Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system</title><source>Springer Nature - Complete Springer Journals</source><creator>Shuai, Mo ; Yingxin, Zhang ; Yuling, Song ; Wenhao, Song ; Yunsheng, Huang</creator><creatorcontrib>Shuai, Mo ; Yingxin, Zhang ; Yuling, Song ; Wenhao, Song ; Yunsheng, Huang</creatorcontrib><description>The nonlinear dynamic model of the non-orthogonal face gear-rotor-bearing system was established considering the nonlinear features associated with time-varying meshing stiffness, transmission error, tooth backlash, bearing clearance, and collision force and friction between tooth. The influence of the excitation frequency, friction coefficient, and support stiffness on the dynamic characteristic of the system is described by the time history, FFT spectrum, phase plane, Poincaré map, and bifurcation diagram. In addition, the multiple-scale method is used to analyze the primary resonance characteristics and determine the stability conditions of the system. The effects of meshing damping, time-varying meshing stiffness, and load on the primary resonance of the system are studied by numerical methods. The results reveal that the non-orthogonal gear-rotor-bearing transmission system exhibits a variety of nonlinear characteristics, and the parameters of the system should be controlled to ensure the stability of the system and prevent the mutation of amplitude.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-022-07432-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Coefficient of friction ; Control ; Damping ; Dynamic characteristics ; Dynamic models ; Dynamical Systems ; Engineering ; Fractals ; Friction ; Laboratories ; Lubricants &amp; lubrication ; Mechanical Engineering ; Meshing ; Methods ; Mutation ; Nonlinear dynamics ; Numerical analysis ; Numerical methods ; Original Paper ; Poincare maps ; Resonance ; Rotor-bearing systems ; Stability analysis ; Stiffness ; Systems stability ; Transmission error ; Vibration ; Vibration analysis</subject><ispartof>Nonlinear dynamics, 2022-06, Vol.108 (4), p.3367-3389</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-66b0db655cca5d1b8fd460da64ae7ec8c4b2fc3a214722a6542eae9682613c6f3</citedby><cites>FETCH-LOGICAL-c319t-66b0db655cca5d1b8fd460da64ae7ec8c4b2fc3a214722a6542eae9682613c6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-022-07432-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-022-07432-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shuai, Mo</creatorcontrib><creatorcontrib>Yingxin, Zhang</creatorcontrib><creatorcontrib>Yuling, Song</creatorcontrib><creatorcontrib>Wenhao, Song</creatorcontrib><creatorcontrib>Yunsheng, Huang</creatorcontrib><title>Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>The nonlinear dynamic model of the non-orthogonal face gear-rotor-bearing system was established considering the nonlinear features associated with time-varying meshing stiffness, transmission error, tooth backlash, bearing clearance, and collision force and friction between tooth. The influence of the excitation frequency, friction coefficient, and support stiffness on the dynamic characteristic of the system is described by the time history, FFT spectrum, phase plane, Poincaré map, and bifurcation diagram. In addition, the multiple-scale method is used to analyze the primary resonance characteristics and determine the stability conditions of the system. The effects of meshing damping, time-varying meshing stiffness, and load on the primary resonance of the system are studied by numerical methods. The results reveal that the non-orthogonal gear-rotor-bearing transmission system exhibits a variety of nonlinear characteristics, and the parameters of the system should be controlled to ensure the stability of the system and prevent the mutation of amplitude.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Coefficient of friction</subject><subject>Control</subject><subject>Damping</subject><subject>Dynamic characteristics</subject><subject>Dynamic models</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fractals</subject><subject>Friction</subject><subject>Laboratories</subject><subject>Lubricants &amp; lubrication</subject><subject>Mechanical Engineering</subject><subject>Meshing</subject><subject>Methods</subject><subject>Mutation</subject><subject>Nonlinear dynamics</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Original Paper</subject><subject>Poincare maps</subject><subject>Resonance</subject><subject>Rotor-bearing systems</subject><subject>Stability analysis</subject><subject>Stiffness</subject><subject>Systems stability</subject><subject>Transmission error</subject><subject>Vibration</subject><subject>Vibration analysis</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtKAzEUDaJgrf6Aq4Dr6M1jkpmlFF9QdKPQXchkMuOUaVKTqdC_N3UK7lzdyz0P7jkIXVO4pQDqLlEKihJgjIASnBFxgma0UJwwWa1O0QwqJghUsDpHFymtAYAzKGfIvgY_9N6ZiL_7OpqxDx4b3-Bt7Dcm7nF0KXjjrctXM-xTn3BosQ-ehDh-hi6DA25NxrtsQmIYQyR1Xnvf4bRPo9tcorPWDMldHeccfTw-vC-eyfLt6WVxvySW02okUtbQ1LIorDVFQ-uybYSExkhhnHK2tKJmreWGUaEYM7IQzBlXyZJJyq1s-RzdTL7bGL52Lo16HXYx_5c0k4qKAkouM4tNLBtDStG1-hhVU9CHMvVUps5l6t8ytcgiPonS9hDMxT_rf1Q_EUh5eg</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Shuai, Mo</creator><creator>Yingxin, Zhang</creator><creator>Yuling, Song</creator><creator>Wenhao, Song</creator><creator>Yunsheng, Huang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220601</creationdate><title>Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system</title><author>Shuai, Mo ; Yingxin, Zhang ; Yuling, Song ; Wenhao, Song ; Yunsheng, Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-66b0db655cca5d1b8fd460da64ae7ec8c4b2fc3a214722a6542eae9682613c6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Coefficient of friction</topic><topic>Control</topic><topic>Damping</topic><topic>Dynamic characteristics</topic><topic>Dynamic models</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fractals</topic><topic>Friction</topic><topic>Laboratories</topic><topic>Lubricants &amp; lubrication</topic><topic>Mechanical Engineering</topic><topic>Meshing</topic><topic>Methods</topic><topic>Mutation</topic><topic>Nonlinear dynamics</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Original Paper</topic><topic>Poincare maps</topic><topic>Resonance</topic><topic>Rotor-bearing systems</topic><topic>Stability analysis</topic><topic>Stiffness</topic><topic>Systems stability</topic><topic>Transmission error</topic><topic>Vibration</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shuai, Mo</creatorcontrib><creatorcontrib>Yingxin, Zhang</creatorcontrib><creatorcontrib>Yuling, Song</creatorcontrib><creatorcontrib>Wenhao, Song</creatorcontrib><creatorcontrib>Yunsheng, Huang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shuai, Mo</au><au>Yingxin, Zhang</au><au>Yuling, Song</au><au>Wenhao, Song</au><au>Yunsheng, Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>108</volume><issue>4</issue><spage>3367</spage><epage>3389</epage><pages>3367-3389</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>The nonlinear dynamic model of the non-orthogonal face gear-rotor-bearing system was established considering the nonlinear features associated with time-varying meshing stiffness, transmission error, tooth backlash, bearing clearance, and collision force and friction between tooth. The influence of the excitation frequency, friction coefficient, and support stiffness on the dynamic characteristic of the system is described by the time history, FFT spectrum, phase plane, Poincaré map, and bifurcation diagram. In addition, the multiple-scale method is used to analyze the primary resonance characteristics and determine the stability conditions of the system. The effects of meshing damping, time-varying meshing stiffness, and load on the primary resonance of the system are studied by numerical methods. The results reveal that the non-orthogonal gear-rotor-bearing transmission system exhibits a variety of nonlinear characteristics, and the parameters of the system should be controlled to ensure the stability of the system and prevent the mutation of amplitude.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-022-07432-4</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2022-06, Vol.108 (4), p.3367-3389
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2671450836
source Springer Nature - Complete Springer Journals
subjects Automotive Engineering
Classical Mechanics
Coefficient of friction
Control
Damping
Dynamic characteristics
Dynamic models
Dynamical Systems
Engineering
Fractals
Friction
Laboratories
Lubricants & lubrication
Mechanical Engineering
Meshing
Methods
Mutation
Nonlinear dynamics
Numerical analysis
Numerical methods
Original Paper
Poincare maps
Resonance
Rotor-bearing systems
Stability analysis
Stiffness
Systems stability
Transmission error
Vibration
Vibration analysis
title Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20vibration%20and%20primary%20resonance%20analysis%20of%20non-orthogonal%20face%20gear-rotor-bearing%20system&rft.jtitle=Nonlinear%20dynamics&rft.au=Shuai,%20Mo&rft.date=2022-06-01&rft.volume=108&rft.issue=4&rft.spage=3367&rft.epage=3389&rft.pages=3367-3389&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-022-07432-4&rft_dat=%3Cproquest_cross%3E2671450836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671450836&rft_id=info:pmid/&rfr_iscdi=true