Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system
The nonlinear dynamic model of the non-orthogonal face gear-rotor-bearing system was established considering the nonlinear features associated with time-varying meshing stiffness, transmission error, tooth backlash, bearing clearance, and collision force and friction between tooth. The influence of...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2022-06, Vol.108 (4), p.3367-3389 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3389 |
---|---|
container_issue | 4 |
container_start_page | 3367 |
container_title | Nonlinear dynamics |
container_volume | 108 |
creator | Shuai, Mo Yingxin, Zhang Yuling, Song Wenhao, Song Yunsheng, Huang |
description | The nonlinear dynamic model of the non-orthogonal face gear-rotor-bearing system was established considering the nonlinear features associated with time-varying meshing stiffness, transmission error, tooth backlash, bearing clearance, and collision force and friction between tooth. The influence of the excitation frequency, friction coefficient, and support stiffness on the dynamic characteristic of the system is described by the time history, FFT spectrum, phase plane, Poincaré map, and bifurcation diagram. In addition, the multiple-scale method is used to analyze the primary resonance characteristics and determine the stability conditions of the system. The effects of meshing damping, time-varying meshing stiffness, and load on the primary resonance of the system are studied by numerical methods. The results reveal that the non-orthogonal gear-rotor-bearing transmission system exhibits a variety of nonlinear characteristics, and the parameters of the system should be controlled to ensure the stability of the system and prevent the mutation of amplitude. |
doi_str_mv | 10.1007/s11071-022-07432-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671450836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671450836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-66b0db655cca5d1b8fd460da64ae7ec8c4b2fc3a214722a6542eae9682613c6f3</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrf6Aq4Dr6M1jkpmlFF9QdKPQXchkMuOUaVKTqdC_N3UK7lzdyz0P7jkIXVO4pQDqLlEKihJgjIASnBFxgma0UJwwWa1O0QwqJghUsDpHFymtAYAzKGfIvgY_9N6ZiL_7OpqxDx4b3-Bt7Dcm7nF0KXjjrctXM-xTn3BosQ-ehDh-hi6DA25NxrtsQmIYQyR1Xnvf4bRPo9tcorPWDMldHeccfTw-vC-eyfLt6WVxvySW02okUtbQ1LIorDVFQ-uybYSExkhhnHK2tKJmreWGUaEYM7IQzBlXyZJJyq1s-RzdTL7bGL52Lo16HXYx_5c0k4qKAkouM4tNLBtDStG1-hhVU9CHMvVUps5l6t8ytcgiPonS9hDMxT_rf1Q_EUh5eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671450836</pqid></control><display><type>article</type><title>Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system</title><source>Springer Nature - Complete Springer Journals</source><creator>Shuai, Mo ; Yingxin, Zhang ; Yuling, Song ; Wenhao, Song ; Yunsheng, Huang</creator><creatorcontrib>Shuai, Mo ; Yingxin, Zhang ; Yuling, Song ; Wenhao, Song ; Yunsheng, Huang</creatorcontrib><description>The nonlinear dynamic model of the non-orthogonal face gear-rotor-bearing system was established considering the nonlinear features associated with time-varying meshing stiffness, transmission error, tooth backlash, bearing clearance, and collision force and friction between tooth. The influence of the excitation frequency, friction coefficient, and support stiffness on the dynamic characteristic of the system is described by the time history, FFT spectrum, phase plane, Poincaré map, and bifurcation diagram. In addition, the multiple-scale method is used to analyze the primary resonance characteristics and determine the stability conditions of the system. The effects of meshing damping, time-varying meshing stiffness, and load on the primary resonance of the system are studied by numerical methods. The results reveal that the non-orthogonal gear-rotor-bearing transmission system exhibits a variety of nonlinear characteristics, and the parameters of the system should be controlled to ensure the stability of the system and prevent the mutation of amplitude.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-022-07432-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Coefficient of friction ; Control ; Damping ; Dynamic characteristics ; Dynamic models ; Dynamical Systems ; Engineering ; Fractals ; Friction ; Laboratories ; Lubricants & lubrication ; Mechanical Engineering ; Meshing ; Methods ; Mutation ; Nonlinear dynamics ; Numerical analysis ; Numerical methods ; Original Paper ; Poincare maps ; Resonance ; Rotor-bearing systems ; Stability analysis ; Stiffness ; Systems stability ; Transmission error ; Vibration ; Vibration analysis</subject><ispartof>Nonlinear dynamics, 2022-06, Vol.108 (4), p.3367-3389</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-66b0db655cca5d1b8fd460da64ae7ec8c4b2fc3a214722a6542eae9682613c6f3</citedby><cites>FETCH-LOGICAL-c319t-66b0db655cca5d1b8fd460da64ae7ec8c4b2fc3a214722a6542eae9682613c6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-022-07432-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-022-07432-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shuai, Mo</creatorcontrib><creatorcontrib>Yingxin, Zhang</creatorcontrib><creatorcontrib>Yuling, Song</creatorcontrib><creatorcontrib>Wenhao, Song</creatorcontrib><creatorcontrib>Yunsheng, Huang</creatorcontrib><title>Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>The nonlinear dynamic model of the non-orthogonal face gear-rotor-bearing system was established considering the nonlinear features associated with time-varying meshing stiffness, transmission error, tooth backlash, bearing clearance, and collision force and friction between tooth. The influence of the excitation frequency, friction coefficient, and support stiffness on the dynamic characteristic of the system is described by the time history, FFT spectrum, phase plane, Poincaré map, and bifurcation diagram. In addition, the multiple-scale method is used to analyze the primary resonance characteristics and determine the stability conditions of the system. The effects of meshing damping, time-varying meshing stiffness, and load on the primary resonance of the system are studied by numerical methods. The results reveal that the non-orthogonal gear-rotor-bearing transmission system exhibits a variety of nonlinear characteristics, and the parameters of the system should be controlled to ensure the stability of the system and prevent the mutation of amplitude.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Coefficient of friction</subject><subject>Control</subject><subject>Damping</subject><subject>Dynamic characteristics</subject><subject>Dynamic models</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fractals</subject><subject>Friction</subject><subject>Laboratories</subject><subject>Lubricants & lubrication</subject><subject>Mechanical Engineering</subject><subject>Meshing</subject><subject>Methods</subject><subject>Mutation</subject><subject>Nonlinear dynamics</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Original Paper</subject><subject>Poincare maps</subject><subject>Resonance</subject><subject>Rotor-bearing systems</subject><subject>Stability analysis</subject><subject>Stiffness</subject><subject>Systems stability</subject><subject>Transmission error</subject><subject>Vibration</subject><subject>Vibration analysis</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtKAzEUDaJgrf6Aq4Dr6M1jkpmlFF9QdKPQXchkMuOUaVKTqdC_N3UK7lzdyz0P7jkIXVO4pQDqLlEKihJgjIASnBFxgma0UJwwWa1O0QwqJghUsDpHFymtAYAzKGfIvgY_9N6ZiL_7OpqxDx4b3-Bt7Dcm7nF0KXjjrctXM-xTn3BosQ-ehDh-hi6DA25NxrtsQmIYQyR1Xnvf4bRPo9tcorPWDMldHeccfTw-vC-eyfLt6WVxvySW02okUtbQ1LIorDVFQ-uybYSExkhhnHK2tKJmreWGUaEYM7IQzBlXyZJJyq1s-RzdTL7bGL52Lo16HXYx_5c0k4qKAkouM4tNLBtDStG1-hhVU9CHMvVUps5l6t8ytcgiPonS9hDMxT_rf1Q_EUh5eg</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Shuai, Mo</creator><creator>Yingxin, Zhang</creator><creator>Yuling, Song</creator><creator>Wenhao, Song</creator><creator>Yunsheng, Huang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220601</creationdate><title>Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system</title><author>Shuai, Mo ; Yingxin, Zhang ; Yuling, Song ; Wenhao, Song ; Yunsheng, Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-66b0db655cca5d1b8fd460da64ae7ec8c4b2fc3a214722a6542eae9682613c6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Coefficient of friction</topic><topic>Control</topic><topic>Damping</topic><topic>Dynamic characteristics</topic><topic>Dynamic models</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fractals</topic><topic>Friction</topic><topic>Laboratories</topic><topic>Lubricants & lubrication</topic><topic>Mechanical Engineering</topic><topic>Meshing</topic><topic>Methods</topic><topic>Mutation</topic><topic>Nonlinear dynamics</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Original Paper</topic><topic>Poincare maps</topic><topic>Resonance</topic><topic>Rotor-bearing systems</topic><topic>Stability analysis</topic><topic>Stiffness</topic><topic>Systems stability</topic><topic>Transmission error</topic><topic>Vibration</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shuai, Mo</creatorcontrib><creatorcontrib>Yingxin, Zhang</creatorcontrib><creatorcontrib>Yuling, Song</creatorcontrib><creatorcontrib>Wenhao, Song</creatorcontrib><creatorcontrib>Yunsheng, Huang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shuai, Mo</au><au>Yingxin, Zhang</au><au>Yuling, Song</au><au>Wenhao, Song</au><au>Yunsheng, Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>108</volume><issue>4</issue><spage>3367</spage><epage>3389</epage><pages>3367-3389</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>The nonlinear dynamic model of the non-orthogonal face gear-rotor-bearing system was established considering the nonlinear features associated with time-varying meshing stiffness, transmission error, tooth backlash, bearing clearance, and collision force and friction between tooth. The influence of the excitation frequency, friction coefficient, and support stiffness on the dynamic characteristic of the system is described by the time history, FFT spectrum, phase plane, Poincaré map, and bifurcation diagram. In addition, the multiple-scale method is used to analyze the primary resonance characteristics and determine the stability conditions of the system. The effects of meshing damping, time-varying meshing stiffness, and load on the primary resonance of the system are studied by numerical methods. The results reveal that the non-orthogonal gear-rotor-bearing transmission system exhibits a variety of nonlinear characteristics, and the parameters of the system should be controlled to ensure the stability of the system and prevent the mutation of amplitude.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-022-07432-4</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2022-06, Vol.108 (4), p.3367-3389 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2671450836 |
source | Springer Nature - Complete Springer Journals |
subjects | Automotive Engineering Classical Mechanics Coefficient of friction Control Damping Dynamic characteristics Dynamic models Dynamical Systems Engineering Fractals Friction Laboratories Lubricants & lubrication Mechanical Engineering Meshing Methods Mutation Nonlinear dynamics Numerical analysis Numerical methods Original Paper Poincare maps Resonance Rotor-bearing systems Stability analysis Stiffness Systems stability Transmission error Vibration Vibration analysis |
title | Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20vibration%20and%20primary%20resonance%20analysis%20of%20non-orthogonal%20face%20gear-rotor-bearing%20system&rft.jtitle=Nonlinear%20dynamics&rft.au=Shuai,%20Mo&rft.date=2022-06-01&rft.volume=108&rft.issue=4&rft.spage=3367&rft.epage=3389&rft.pages=3367-3389&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-022-07432-4&rft_dat=%3Cproquest_cross%3E2671450836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671450836&rft_id=info:pmid/&rfr_iscdi=true |