THE COMPONENTS OF THE SINGULAR LOCUS OF A COMPONENT OF A SPRINGER FIBER OVER x2 = 0

For x ∈ End(K n ) satisfying x 2 = 0 let F x be the variety of full flags stable under the action of x (Springer fiber over x ). The full classification of the components of F x according to their smoothness was provided in [4] in terms of both Young tableaux and link patterns. Moreover in [2] the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2022, Vol.27 (2), p.597-633
Hauptverfasser: MANSOUR, RONIT, MELNIKOV, ANNA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 633
container_issue 2
container_start_page 597
container_title Transformation groups
container_volume 27
creator MANSOUR, RONIT
MELNIKOV, ANNA
description For x ∈ End(K n ) satisfying x 2 = 0 let F x be the variety of full flags stable under the action of x (Springer fiber over x ). The full classification of the components of F x according to their smoothness was provided in [4] in terms of both Young tableaux and link patterns. Moreover in [2] the purely combinatorial algorithm to compute the singular locus of a singular component of F x is provided. However, this algorithm involves the computation of the graph of the component, and the complexity of computations grows very quickly, so that in practice it is impossible to use it. In this paper, we construct another algorithm, giving all the components of the singular locus of a singular component F σ of F x in terms of link patterns constructed straightforwardly from the link pattern of σ.
doi_str_mv 10.1007/s00031-020-09621-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671309194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671309194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1640-5e9ec385eeb18cc7756e01d72fc68a370433559b49dda4ecf5353c9679fc73683</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19WTpEmaCy9q6T6grmPdxLvQpak4dJvJBvrvzVZhd96cj5fnPQdehG4J3BMA-eABgJEIKESgBA3TGeoRHiSeiNfzMEPCopgJeomuvF8BECmE6KFqPspxVj5Py0k-mVe4HOCDUo0nw0WRznBRZoujmp6obq2mswDlMzwYP4VavoTyTfEjhmt00dYf3t789T5aDPJ5NoqKcjjO0iIyRMQQcausYQm3dkkSY6TkwgJpJG2NSGomIWaMc7WMVdPUsTUtZ5wZJaRqjWQiYX10193dus3X3vqdXm32bh1eaiokYaCIigNFO8q4jffOtnrr3j9r96MJ6EN4ugtPh_D0MTwNwcQ6kw_w-s260-l_XL8IhGha</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671309194</pqid></control><display><type>article</type><title>THE COMPONENTS OF THE SINGULAR LOCUS OF A COMPONENT OF A SPRINGER FIBER OVER x2 = 0</title><source>SpringerLink Journals</source><creator>MANSOUR, RONIT ; MELNIKOV, ANNA</creator><creatorcontrib>MANSOUR, RONIT ; MELNIKOV, ANNA</creatorcontrib><description>For x ∈ End(K n ) satisfying x 2 = 0 let F x be the variety of full flags stable under the action of x (Springer fiber over x ). The full classification of the components of F x according to their smoothness was provided in [4] in terms of both Young tableaux and link patterns. Moreover in [2] the purely combinatorial algorithm to compute the singular locus of a singular component of F x is provided. However, this algorithm involves the computation of the graph of the component, and the complexity of computations grows very quickly, so that in practice it is impossible to use it. In this paper, we construct another algorithm, giving all the components of the singular locus of a singular component F σ of F x in terms of link patterns constructed straightforwardly from the link pattern of σ.</description><identifier>ISSN: 1083-4362</identifier><identifier>EISSN: 1531-586X</identifier><identifier>DOI: 10.1007/s00031-020-09621-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Combinatorial analysis ; Lie Groups ; Loci ; Mathematics ; Mathematics and Statistics ; Smoothness ; Topological Groups</subject><ispartof>Transformation groups, 2022, Vol.27 (2), p.597-633</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1640-5e9ec385eeb18cc7756e01d72fc68a370433559b49dda4ecf5353c9679fc73683</citedby><cites>FETCH-LOGICAL-c1640-5e9ec385eeb18cc7756e01d72fc68a370433559b49dda4ecf5353c9679fc73683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00031-020-09621-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00031-020-09621-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>MANSOUR, RONIT</creatorcontrib><creatorcontrib>MELNIKOV, ANNA</creatorcontrib><title>THE COMPONENTS OF THE SINGULAR LOCUS OF A COMPONENT OF A SPRINGER FIBER OVER x2 = 0</title><title>Transformation groups</title><addtitle>Transformation Groups</addtitle><description>For x ∈ End(K n ) satisfying x 2 = 0 let F x be the variety of full flags stable under the action of x (Springer fiber over x ). The full classification of the components of F x according to their smoothness was provided in [4] in terms of both Young tableaux and link patterns. Moreover in [2] the purely combinatorial algorithm to compute the singular locus of a singular component of F x is provided. However, this algorithm involves the computation of the graph of the component, and the complexity of computations grows very quickly, so that in practice it is impossible to use it. In this paper, we construct another algorithm, giving all the components of the singular locus of a singular component F σ of F x in terms of link patterns constructed straightforwardly from the link pattern of σ.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Lie Groups</subject><subject>Loci</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Smoothness</subject><subject>Topological Groups</subject><issn>1083-4362</issn><issn>1531-586X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19WTpEmaCy9q6T6grmPdxLvQpak4dJvJBvrvzVZhd96cj5fnPQdehG4J3BMA-eABgJEIKESgBA3TGeoRHiSeiNfzMEPCopgJeomuvF8BECmE6KFqPspxVj5Py0k-mVe4HOCDUo0nw0WRznBRZoujmp6obq2mswDlMzwYP4VavoTyTfEjhmt00dYf3t789T5aDPJ5NoqKcjjO0iIyRMQQcausYQm3dkkSY6TkwgJpJG2NSGomIWaMc7WMVdPUsTUtZ5wZJaRqjWQiYX10193dus3X3vqdXm32bh1eaiokYaCIigNFO8q4jffOtnrr3j9r96MJ6EN4ugtPh_D0MTwNwcQ6kw_w-s260-l_XL8IhGha</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>MANSOUR, RONIT</creator><creator>MELNIKOV, ANNA</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>THE COMPONENTS OF THE SINGULAR LOCUS OF A COMPONENT OF A SPRINGER FIBER OVER x2 = 0</title><author>MANSOUR, RONIT ; MELNIKOV, ANNA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1640-5e9ec385eeb18cc7756e01d72fc68a370433559b49dda4ecf5353c9679fc73683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Lie Groups</topic><topic>Loci</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Smoothness</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MANSOUR, RONIT</creatorcontrib><creatorcontrib>MELNIKOV, ANNA</creatorcontrib><collection>CrossRef</collection><jtitle>Transformation groups</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MANSOUR, RONIT</au><au>MELNIKOV, ANNA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE COMPONENTS OF THE SINGULAR LOCUS OF A COMPONENT OF A SPRINGER FIBER OVER x2 = 0</atitle><jtitle>Transformation groups</jtitle><stitle>Transformation Groups</stitle><date>2022</date><risdate>2022</risdate><volume>27</volume><issue>2</issue><spage>597</spage><epage>633</epage><pages>597-633</pages><issn>1083-4362</issn><eissn>1531-586X</eissn><abstract>For x ∈ End(K n ) satisfying x 2 = 0 let F x be the variety of full flags stable under the action of x (Springer fiber over x ). The full classification of the components of F x according to their smoothness was provided in [4] in terms of both Young tableaux and link patterns. Moreover in [2] the purely combinatorial algorithm to compute the singular locus of a singular component of F x is provided. However, this algorithm involves the computation of the graph of the component, and the complexity of computations grows very quickly, so that in practice it is impossible to use it. In this paper, we construct another algorithm, giving all the components of the singular locus of a singular component F σ of F x in terms of link patterns constructed straightforwardly from the link pattern of σ.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00031-020-09621-0</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4362
ispartof Transformation groups, 2022, Vol.27 (2), p.597-633
issn 1083-4362
1531-586X
language eng
recordid cdi_proquest_journals_2671309194
source SpringerLink Journals
subjects Algebra
Algorithms
Combinatorial analysis
Lie Groups
Loci
Mathematics
Mathematics and Statistics
Smoothness
Topological Groups
title THE COMPONENTS OF THE SINGULAR LOCUS OF A COMPONENT OF A SPRINGER FIBER OVER x2 = 0
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A24%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20COMPONENTS%20OF%20THE%20SINGULAR%20LOCUS%20OF%20A%20COMPONENT%20OF%20A%20SPRINGER%20FIBER%20OVER%20x2%20=%200&rft.jtitle=Transformation%20groups&rft.au=MANSOUR,%20RONIT&rft.date=2022&rft.volume=27&rft.issue=2&rft.spage=597&rft.epage=633&rft.pages=597-633&rft.issn=1083-4362&rft.eissn=1531-586X&rft_id=info:doi/10.1007/s00031-020-09621-0&rft_dat=%3Cproquest_cross%3E2671309194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671309194&rft_id=info:pmid/&rfr_iscdi=true