On Nonconvex Pseudomonotone Equilibrium Problems with Applications
In this paper, we provide a further study for nonconvex pseudomonotone equilibrium problems and nonconvex mixed variational inequalities by using global directional derivatives. We provide finer necessary and sufficient optimality conditions for both problems in the pseudomonotone case and, as a con...
Gespeichert in:
Veröffentlicht in: | Set-valued and variational analysis 2022-06, Vol.30 (2), p.355-372 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 372 |
---|---|
container_issue | 2 |
container_start_page | 355 |
container_title | Set-valued and variational analysis |
container_volume | 30 |
creator | Lara, F. |
description | In this paper, we provide a further study for nonconvex pseudomonotone equilibrium problems and nonconvex mixed variational inequalities by using global directional derivatives. We provide finer necessary and sufficient optimality conditions for both problems in the pseudomonotone case and, as a consequence, a characterization for a point to be a solution for nonconvex equilibrium problems is given. Finally, we apply the golden ratio algorithm for a class of nonconvex functions in equilibrium problems and mixed variational inequalities. |
doi_str_mv | 10.1007/s11228-021-00586-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671309137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671309137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1bec3bc4249c1282f81a924d72a341f1636b221869962e8034214222ca401eb23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTZ4xm7iLEtVHlJFu4C1lbgOpErs1E54_D2GINixmlncc0dzCDkHdgmMZVcBAFFShkAZm8mUsgMyAZlllM0EHP7unB-TkxB2kWEshwm5XtvkwVnt7Kt5TzbBDFvXOut6Z02y3A91U5e-Htpk413ZmDYkb3X_ksy7rql10dfOhlNyVBVNMGc_c0qebpaPizu6Wt_eL-YrqjnkPYXSaF5qgSLXgBIrCUWOYpthwQVUkPK0RASZ5nmKRjIuEAQi6kIwMCXyKbkYezvv9oMJvdq5wdt4UmGaAY__8CymcExp70LwplKdr9vCfyhg6suVGl2p6Ep9u1IsQnyEQgzbZ-P_qv-hPgGRB2rc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671309137</pqid></control><display><type>article</type><title>On Nonconvex Pseudomonotone Equilibrium Problems with Applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Lara, F.</creator><creatorcontrib>Lara, F.</creatorcontrib><description>In this paper, we provide a further study for nonconvex pseudomonotone equilibrium problems and nonconvex mixed variational inequalities by using global directional derivatives. We provide finer necessary and sufficient optimality conditions for both problems in the pseudomonotone case and, as a consequence, a characterization for a point to be a solution for nonconvex equilibrium problems is given. Finally, we apply the golden ratio algorithm for a class of nonconvex functions in equilibrium problems and mixed variational inequalities.</description><identifier>ISSN: 1877-0533</identifier><identifier>EISSN: 1877-0541</identifier><identifier>DOI: 10.1007/s11228-021-00586-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Analysis ; Equilibrium ; Inequalities ; Mathematics ; Mathematics and Statistics ; Optimization</subject><ispartof>Set-valued and variational analysis, 2022-06, Vol.30 (2), p.355-372</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1bec3bc4249c1282f81a924d72a341f1636b221869962e8034214222ca401eb23</citedby><cites>FETCH-LOGICAL-c319t-1bec3bc4249c1282f81a924d72a341f1636b221869962e8034214222ca401eb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11228-021-00586-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11228-021-00586-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Lara, F.</creatorcontrib><title>On Nonconvex Pseudomonotone Equilibrium Problems with Applications</title><title>Set-valued and variational analysis</title><addtitle>Set-Valued Var. Anal</addtitle><description>In this paper, we provide a further study for nonconvex pseudomonotone equilibrium problems and nonconvex mixed variational inequalities by using global directional derivatives. We provide finer necessary and sufficient optimality conditions for both problems in the pseudomonotone case and, as a consequence, a characterization for a point to be a solution for nonconvex equilibrium problems is given. Finally, we apply the golden ratio algorithm for a class of nonconvex functions in equilibrium problems and mixed variational inequalities.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Equilibrium</subject><subject>Inequalities</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><issn>1877-0533</issn><issn>1877-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTZ4xm7iLEtVHlJFu4C1lbgOpErs1E54_D2GINixmlncc0dzCDkHdgmMZVcBAFFShkAZm8mUsgMyAZlllM0EHP7unB-TkxB2kWEshwm5XtvkwVnt7Kt5TzbBDFvXOut6Z02y3A91U5e-Htpk413ZmDYkb3X_ksy7rql10dfOhlNyVBVNMGc_c0qebpaPizu6Wt_eL-YrqjnkPYXSaF5qgSLXgBIrCUWOYpthwQVUkPK0RASZ5nmKRjIuEAQi6kIwMCXyKbkYezvv9oMJvdq5wdt4UmGaAY__8CymcExp70LwplKdr9vCfyhg6suVGl2p6Ep9u1IsQnyEQgzbZ-P_qv-hPgGRB2rc</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Lara, F.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>On Nonconvex Pseudomonotone Equilibrium Problems with Applications</title><author>Lara, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1bec3bc4249c1282f81a924d72a341f1636b221869962e8034214222ca401eb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Equilibrium</topic><topic>Inequalities</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lara, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Set-valued and variational analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lara, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Nonconvex Pseudomonotone Equilibrium Problems with Applications</atitle><jtitle>Set-valued and variational analysis</jtitle><stitle>Set-Valued Var. Anal</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>30</volume><issue>2</issue><spage>355</spage><epage>372</epage><pages>355-372</pages><issn>1877-0533</issn><eissn>1877-0541</eissn><abstract>In this paper, we provide a further study for nonconvex pseudomonotone equilibrium problems and nonconvex mixed variational inequalities by using global directional derivatives. We provide finer necessary and sufficient optimality conditions for both problems in the pseudomonotone case and, as a consequence, a characterization for a point to be a solution for nonconvex equilibrium problems is given. Finally, we apply the golden ratio algorithm for a class of nonconvex functions in equilibrium problems and mixed variational inequalities.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11228-021-00586-0</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1877-0533 |
ispartof | Set-valued and variational analysis, 2022-06, Vol.30 (2), p.355-372 |
issn | 1877-0533 1877-0541 |
language | eng |
recordid | cdi_proquest_journals_2671309137 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Analysis Equilibrium Inequalities Mathematics Mathematics and Statistics Optimization |
title | On Nonconvex Pseudomonotone Equilibrium Problems with Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Nonconvex%20Pseudomonotone%20Equilibrium%20Problems%20with%20Applications&rft.jtitle=Set-valued%20and%20variational%20analysis&rft.au=Lara,%20F.&rft.date=2022-06-01&rft.volume=30&rft.issue=2&rft.spage=355&rft.epage=372&rft.pages=355-372&rft.issn=1877-0533&rft.eissn=1877-0541&rft_id=info:doi/10.1007/s11228-021-00586-0&rft_dat=%3Cproquest_cross%3E2671309137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671309137&rft_id=info:pmid/&rfr_iscdi=true |