On Nonconvex Pseudomonotone Equilibrium Problems with Applications

In this paper, we provide a further study for nonconvex pseudomonotone equilibrium problems and nonconvex mixed variational inequalities by using global directional derivatives. We provide finer necessary and sufficient optimality conditions for both problems in the pseudomonotone case and, as a con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Set-valued and variational analysis 2022-06, Vol.30 (2), p.355-372
1. Verfasser: Lara, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue 2
container_start_page 355
container_title Set-valued and variational analysis
container_volume 30
creator Lara, F.
description In this paper, we provide a further study for nonconvex pseudomonotone equilibrium problems and nonconvex mixed variational inequalities by using global directional derivatives. We provide finer necessary and sufficient optimality conditions for both problems in the pseudomonotone case and, as a consequence, a characterization for a point to be a solution for nonconvex equilibrium problems is given. Finally, we apply the golden ratio algorithm for a class of nonconvex functions in equilibrium problems and mixed variational inequalities.
doi_str_mv 10.1007/s11228-021-00586-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671309137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671309137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1bec3bc4249c1282f81a924d72a341f1636b221869962e8034214222ca401eb23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTZ4xm7iLEtVHlJFu4C1lbgOpErs1E54_D2GINixmlncc0dzCDkHdgmMZVcBAFFShkAZm8mUsgMyAZlllM0EHP7unB-TkxB2kWEshwm5XtvkwVnt7Kt5TzbBDFvXOut6Z02y3A91U5e-Htpk413ZmDYkb3X_ksy7rql10dfOhlNyVBVNMGc_c0qebpaPizu6Wt_eL-YrqjnkPYXSaF5qgSLXgBIrCUWOYpthwQVUkPK0RASZ5nmKRjIuEAQi6kIwMCXyKbkYezvv9oMJvdq5wdt4UmGaAY__8CymcExp70LwplKdr9vCfyhg6suVGl2p6Ep9u1IsQnyEQgzbZ-P_qv-hPgGRB2rc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671309137</pqid></control><display><type>article</type><title>On Nonconvex Pseudomonotone Equilibrium Problems with Applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Lara, F.</creator><creatorcontrib>Lara, F.</creatorcontrib><description>In this paper, we provide a further study for nonconvex pseudomonotone equilibrium problems and nonconvex mixed variational inequalities by using global directional derivatives. We provide finer necessary and sufficient optimality conditions for both problems in the pseudomonotone case and, as a consequence, a characterization for a point to be a solution for nonconvex equilibrium problems is given. Finally, we apply the golden ratio algorithm for a class of nonconvex functions in equilibrium problems and mixed variational inequalities.</description><identifier>ISSN: 1877-0533</identifier><identifier>EISSN: 1877-0541</identifier><identifier>DOI: 10.1007/s11228-021-00586-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Analysis ; Equilibrium ; Inequalities ; Mathematics ; Mathematics and Statistics ; Optimization</subject><ispartof>Set-valued and variational analysis, 2022-06, Vol.30 (2), p.355-372</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1bec3bc4249c1282f81a924d72a341f1636b221869962e8034214222ca401eb23</citedby><cites>FETCH-LOGICAL-c319t-1bec3bc4249c1282f81a924d72a341f1636b221869962e8034214222ca401eb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11228-021-00586-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11228-021-00586-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Lara, F.</creatorcontrib><title>On Nonconvex Pseudomonotone Equilibrium Problems with Applications</title><title>Set-valued and variational analysis</title><addtitle>Set-Valued Var. Anal</addtitle><description>In this paper, we provide a further study for nonconvex pseudomonotone equilibrium problems and nonconvex mixed variational inequalities by using global directional derivatives. We provide finer necessary and sufficient optimality conditions for both problems in the pseudomonotone case and, as a consequence, a characterization for a point to be a solution for nonconvex equilibrium problems is given. Finally, we apply the golden ratio algorithm for a class of nonconvex functions in equilibrium problems and mixed variational inequalities.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Equilibrium</subject><subject>Inequalities</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><issn>1877-0533</issn><issn>1877-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTZ4xm7iLEtVHlJFu4C1lbgOpErs1E54_D2GINixmlncc0dzCDkHdgmMZVcBAFFShkAZm8mUsgMyAZlllM0EHP7unB-TkxB2kWEshwm5XtvkwVnt7Kt5TzbBDFvXOut6Z02y3A91U5e-Htpk413ZmDYkb3X_ksy7rql10dfOhlNyVBVNMGc_c0qebpaPizu6Wt_eL-YrqjnkPYXSaF5qgSLXgBIrCUWOYpthwQVUkPK0RASZ5nmKRjIuEAQi6kIwMCXyKbkYezvv9oMJvdq5wdt4UmGaAY__8CymcExp70LwplKdr9vCfyhg6suVGl2p6Ep9u1IsQnyEQgzbZ-P_qv-hPgGRB2rc</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Lara, F.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>On Nonconvex Pseudomonotone Equilibrium Problems with Applications</title><author>Lara, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1bec3bc4249c1282f81a924d72a341f1636b221869962e8034214222ca401eb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Equilibrium</topic><topic>Inequalities</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lara, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Set-valued and variational analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lara, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Nonconvex Pseudomonotone Equilibrium Problems with Applications</atitle><jtitle>Set-valued and variational analysis</jtitle><stitle>Set-Valued Var. Anal</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>30</volume><issue>2</issue><spage>355</spage><epage>372</epage><pages>355-372</pages><issn>1877-0533</issn><eissn>1877-0541</eissn><abstract>In this paper, we provide a further study for nonconvex pseudomonotone equilibrium problems and nonconvex mixed variational inequalities by using global directional derivatives. We provide finer necessary and sufficient optimality conditions for both problems in the pseudomonotone case and, as a consequence, a characterization for a point to be a solution for nonconvex equilibrium problems is given. Finally, we apply the golden ratio algorithm for a class of nonconvex functions in equilibrium problems and mixed variational inequalities.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11228-021-00586-0</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1877-0533
ispartof Set-valued and variational analysis, 2022-06, Vol.30 (2), p.355-372
issn 1877-0533
1877-0541
language eng
recordid cdi_proquest_journals_2671309137
source Springer Nature - Complete Springer Journals
subjects Algorithms
Analysis
Equilibrium
Inequalities
Mathematics
Mathematics and Statistics
Optimization
title On Nonconvex Pseudomonotone Equilibrium Problems with Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Nonconvex%20Pseudomonotone%20Equilibrium%20Problems%20with%20Applications&rft.jtitle=Set-valued%20and%20variational%20analysis&rft.au=Lara,%20F.&rft.date=2022-06-01&rft.volume=30&rft.issue=2&rft.spage=355&rft.epage=372&rft.pages=355-372&rft.issn=1877-0533&rft.eissn=1877-0541&rft_id=info:doi/10.1007/s11228-021-00586-0&rft_dat=%3Cproquest_cross%3E2671309137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671309137&rft_id=info:pmid/&rfr_iscdi=true