Theory-inspired machine learning—towards a synergy between knowledge and data
Most engineering domains abound with models derived from first principles that have beenproven to be effective for decades. These models are not only a valuable source of knowledge, but they also form the basis of simulations. The recent trend of digitization has complemented these models with data...
Gespeichert in:
Veröffentlicht in: | Welding in the world 2022-07, Vol.66 (7), p.1291-1304 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1304 |
---|---|
container_issue | 7 |
container_start_page | 1291 |
container_title | Welding in the world |
container_volume | 66 |
creator | Hoffer, Johannes G. Ofner, Andreas B. Rohrhofer, Franz M. Lovrić, Mario Kern, Roman Lindstaedt, Stefanie Geiger, Bernhard C. |
description | Most engineering domains abound with models derived from first principles that have beenproven to be effective for decades. These models are not only a valuable source of knowledge, but they also form the basis of simulations. The recent trend of digitization has complemented these models with data in all forms and variants, such as process monitoring time series, measured material characteristics, and stored production parameters. Theory-inspired machine learning combines the available models and data, reaping the benefits of established knowledge and the capabilities of modern, data-driven approaches. Compared to purely physics- or purely data-driven models, the models resulting from theory-inspired machine learning are often more accurate and less complex, extrapolate better, or allow faster model training or inference. In this short survey, we introduce and discuss several prominent approaches to theory-inspired machine learning and show how they were applied in the fields of welding, joining, additive manufacturing, and metal forming. |
doi_str_mv | 10.1007/s40194-022-01270-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671308843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671308843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-626fbb21449427d80c953e752187b37e65e31c67751403e48014454465cc245f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wisTaMH7GdJap4SZW6KWvLSSZpSusUO1WVrvgIvpAvIRAkdixGszn3zugQcsXghgHo2yiBZZIC5xQY10APR2TCjDZUKZUdkwmAFJRzY07JWYwrAMiGmZD5Yolt6Gnj47YJWCYbVywbj8kaXfCNrz_fP7p270IZE5fE3mOo-yTHbo_ok1ff7tdY1pg4Xyal69wFOancOuLl7z4nLw_3i-kTnc0fn6d3M1oIJTqquKrynDMpM8l1aaDIUoE65cPPudCoUhSsUFqnTIJAaWBAUylVWhRcppU4J9dj7za0bzuMnV21u-CHk5YrzQQYI8VA8ZEqQhtjwMpuQ7NxobcM7Lc4O4qzgzj7I84ehpAYQ3GAfY3hr_qf1BdkRXDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671308843</pqid></control><display><type>article</type><title>Theory-inspired machine learning—towards a synergy between knowledge and data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hoffer, Johannes G. ; Ofner, Andreas B. ; Rohrhofer, Franz M. ; Lovrić, Mario ; Kern, Roman ; Lindstaedt, Stefanie ; Geiger, Bernhard C.</creator><creatorcontrib>Hoffer, Johannes G. ; Ofner, Andreas B. ; Rohrhofer, Franz M. ; Lovrić, Mario ; Kern, Roman ; Lindstaedt, Stefanie ; Geiger, Bernhard C.</creatorcontrib><description>Most engineering domains abound with models derived from first principles that have beenproven to be effective for decades. These models are not only a valuable source of knowledge, but they also form the basis of simulations. The recent trend of digitization has complemented these models with data in all forms and variants, such as process monitoring time series, measured material characteristics, and stored production parameters. Theory-inspired machine learning combines the available models and data, reaping the benefits of established knowledge and the capabilities of modern, data-driven approaches. Compared to purely physics- or purely data-driven models, the models resulting from theory-inspired machine learning are often more accurate and less complex, extrapolate better, or allow faster model training or inference. In this short survey, we introduce and discuss several prominent approaches to theory-inspired machine learning and show how they were applied in the fields of welding, joining, additive manufacturing, and metal forming.</description><identifier>ISSN: 0043-2288</identifier><identifier>EISSN: 1878-6669</identifier><identifier>DOI: 10.1007/s40194-022-01270-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chemistry and Materials Science ; Data science ; First principles ; Machine learning ; Materials Science ; Metal forming ; Metallic Materials ; Review Article ; Solid Mechanics ; Theoretical and Applied Mechanics</subject><ispartof>Welding in the world, 2022-07, Vol.66 (7), p.1291-1304</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-626fbb21449427d80c953e752187b37e65e31c67751403e48014454465cc245f3</citedby><cites>FETCH-LOGICAL-c363t-626fbb21449427d80c953e752187b37e65e31c67751403e48014454465cc245f3</cites><orcidid>0000-0003-3257-743X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40194-022-01270-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40194-022-01270-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Hoffer, Johannes G.</creatorcontrib><creatorcontrib>Ofner, Andreas B.</creatorcontrib><creatorcontrib>Rohrhofer, Franz M.</creatorcontrib><creatorcontrib>Lovrić, Mario</creatorcontrib><creatorcontrib>Kern, Roman</creatorcontrib><creatorcontrib>Lindstaedt, Stefanie</creatorcontrib><creatorcontrib>Geiger, Bernhard C.</creatorcontrib><title>Theory-inspired machine learning—towards a synergy between knowledge and data</title><title>Welding in the world</title><addtitle>Weld World</addtitle><description>Most engineering domains abound with models derived from first principles that have beenproven to be effective for decades. These models are not only a valuable source of knowledge, but they also form the basis of simulations. The recent trend of digitization has complemented these models with data in all forms and variants, such as process monitoring time series, measured material characteristics, and stored production parameters. Theory-inspired machine learning combines the available models and data, reaping the benefits of established knowledge and the capabilities of modern, data-driven approaches. Compared to purely physics- or purely data-driven models, the models resulting from theory-inspired machine learning are often more accurate and less complex, extrapolate better, or allow faster model training or inference. In this short survey, we introduce and discuss several prominent approaches to theory-inspired machine learning and show how they were applied in the fields of welding, joining, additive manufacturing, and metal forming.</description><subject>Chemistry and Materials Science</subject><subject>Data science</subject><subject>First principles</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Metal forming</subject><subject>Metallic Materials</subject><subject>Review Article</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><issn>0043-2288</issn><issn>1878-6669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtOwzAQRS0EEuXxA6wisTaMH7GdJap4SZW6KWvLSSZpSusUO1WVrvgIvpAvIRAkdixGszn3zugQcsXghgHo2yiBZZIC5xQY10APR2TCjDZUKZUdkwmAFJRzY07JWYwrAMiGmZD5Yolt6Gnj47YJWCYbVywbj8kaXfCNrz_fP7p270IZE5fE3mOo-yTHbo_ok1ff7tdY1pg4Xyal69wFOancOuLl7z4nLw_3i-kTnc0fn6d3M1oIJTqquKrynDMpM8l1aaDIUoE65cPPudCoUhSsUFqnTIJAaWBAUylVWhRcppU4J9dj7za0bzuMnV21u-CHk5YrzQQYI8VA8ZEqQhtjwMpuQ7NxobcM7Lc4O4qzgzj7I84ehpAYQ3GAfY3hr_qf1BdkRXDg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Hoffer, Johannes G.</creator><creator>Ofner, Andreas B.</creator><creator>Rohrhofer, Franz M.</creator><creator>Lovrić, Mario</creator><creator>Kern, Roman</creator><creator>Lindstaedt, Stefanie</creator><creator>Geiger, Bernhard C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3257-743X</orcidid></search><sort><creationdate>20220701</creationdate><title>Theory-inspired machine learning—towards a synergy between knowledge and data</title><author>Hoffer, Johannes G. ; Ofner, Andreas B. ; Rohrhofer, Franz M. ; Lovrić, Mario ; Kern, Roman ; Lindstaedt, Stefanie ; Geiger, Bernhard C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-626fbb21449427d80c953e752187b37e65e31c67751403e48014454465cc245f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry and Materials Science</topic><topic>Data science</topic><topic>First principles</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Metal forming</topic><topic>Metallic Materials</topic><topic>Review Article</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffer, Johannes G.</creatorcontrib><creatorcontrib>Ofner, Andreas B.</creatorcontrib><creatorcontrib>Rohrhofer, Franz M.</creatorcontrib><creatorcontrib>Lovrić, Mario</creatorcontrib><creatorcontrib>Kern, Roman</creatorcontrib><creatorcontrib>Lindstaedt, Stefanie</creatorcontrib><creatorcontrib>Geiger, Bernhard C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Welding in the world</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffer, Johannes G.</au><au>Ofner, Andreas B.</au><au>Rohrhofer, Franz M.</au><au>Lovrić, Mario</au><au>Kern, Roman</au><au>Lindstaedt, Stefanie</au><au>Geiger, Bernhard C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory-inspired machine learning—towards a synergy between knowledge and data</atitle><jtitle>Welding in the world</jtitle><stitle>Weld World</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>66</volume><issue>7</issue><spage>1291</spage><epage>1304</epage><pages>1291-1304</pages><issn>0043-2288</issn><eissn>1878-6669</eissn><abstract>Most engineering domains abound with models derived from first principles that have beenproven to be effective for decades. These models are not only a valuable source of knowledge, but they also form the basis of simulations. The recent trend of digitization has complemented these models with data in all forms and variants, such as process monitoring time series, measured material characteristics, and stored production parameters. Theory-inspired machine learning combines the available models and data, reaping the benefits of established knowledge and the capabilities of modern, data-driven approaches. Compared to purely physics- or purely data-driven models, the models resulting from theory-inspired machine learning are often more accurate and less complex, extrapolate better, or allow faster model training or inference. In this short survey, we introduce and discuss several prominent approaches to theory-inspired machine learning and show how they were applied in the fields of welding, joining, additive manufacturing, and metal forming.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40194-022-01270-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3257-743X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-2288 |
ispartof | Welding in the world, 2022-07, Vol.66 (7), p.1291-1304 |
issn | 0043-2288 1878-6669 |
language | eng |
recordid | cdi_proquest_journals_2671308843 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chemistry and Materials Science Data science First principles Machine learning Materials Science Metal forming Metallic Materials Review Article Solid Mechanics Theoretical and Applied Mechanics |
title | Theory-inspired machine learning—towards a synergy between knowledge and data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory-inspired%20machine%20learning%E2%80%94towards%20a%20synergy%20between%20knowledge%20and%20data&rft.jtitle=Welding%20in%20the%20world&rft.au=Hoffer,%20Johannes%20G.&rft.date=2022-07-01&rft.volume=66&rft.issue=7&rft.spage=1291&rft.epage=1304&rft.pages=1291-1304&rft.issn=0043-2288&rft.eissn=1878-6669&rft_id=info:doi/10.1007/s40194-022-01270-z&rft_dat=%3Cproquest_cross%3E2671308843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671308843&rft_id=info:pmid/&rfr_iscdi=true |