Theory-inspired machine learning—towards a synergy between knowledge and data

Most engineering domains abound with models derived from first principles that have beenproven to be effective for decades. These models are not only a valuable source of knowledge, but they also form the basis of simulations. The recent trend of digitization has complemented these models with data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Welding in the world 2022-07, Vol.66 (7), p.1291-1304
Hauptverfasser: Hoffer, Johannes G., Ofner, Andreas B., Rohrhofer, Franz M., Lovrić, Mario, Kern, Roman, Lindstaedt, Stefanie, Geiger, Bernhard C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1304
container_issue 7
container_start_page 1291
container_title Welding in the world
container_volume 66
creator Hoffer, Johannes G.
Ofner, Andreas B.
Rohrhofer, Franz M.
Lovrić, Mario
Kern, Roman
Lindstaedt, Stefanie
Geiger, Bernhard C.
description Most engineering domains abound with models derived from first principles that have beenproven to be effective for decades. These models are not only a valuable source of knowledge, but they also form the basis of simulations. The recent trend of digitization has complemented these models with data in all forms and variants, such as process monitoring time series, measured material characteristics, and stored production parameters. Theory-inspired machine learning combines the available models and data, reaping the benefits of established knowledge and the capabilities of modern, data-driven approaches. Compared to purely physics- or purely data-driven models, the models resulting from theory-inspired machine learning are often more accurate and less complex, extrapolate better, or allow faster model training or inference. In this short survey, we introduce and discuss several prominent approaches to theory-inspired machine learning and show how they were applied in the fields of welding, joining, additive manufacturing, and metal forming.
doi_str_mv 10.1007/s40194-022-01270-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671308843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671308843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-626fbb21449427d80c953e752187b37e65e31c67751403e48014454465cc245f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wisTaMH7GdJap4SZW6KWvLSSZpSusUO1WVrvgIvpAvIRAkdixGszn3zugQcsXghgHo2yiBZZIC5xQY10APR2TCjDZUKZUdkwmAFJRzY07JWYwrAMiGmZD5Yolt6Gnj47YJWCYbVywbj8kaXfCNrz_fP7p270IZE5fE3mOo-yTHbo_ok1ff7tdY1pg4Xyal69wFOancOuLl7z4nLw_3i-kTnc0fn6d3M1oIJTqquKrynDMpM8l1aaDIUoE65cPPudCoUhSsUFqnTIJAaWBAUylVWhRcppU4J9dj7za0bzuMnV21u-CHk5YrzQQYI8VA8ZEqQhtjwMpuQ7NxobcM7Lc4O4qzgzj7I84ehpAYQ3GAfY3hr_qf1BdkRXDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671308843</pqid></control><display><type>article</type><title>Theory-inspired machine learning—towards a synergy between knowledge and data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hoffer, Johannes G. ; Ofner, Andreas B. ; Rohrhofer, Franz M. ; Lovrić, Mario ; Kern, Roman ; Lindstaedt, Stefanie ; Geiger, Bernhard C.</creator><creatorcontrib>Hoffer, Johannes G. ; Ofner, Andreas B. ; Rohrhofer, Franz M. ; Lovrić, Mario ; Kern, Roman ; Lindstaedt, Stefanie ; Geiger, Bernhard C.</creatorcontrib><description>Most engineering domains abound with models derived from first principles that have beenproven to be effective for decades. These models are not only a valuable source of knowledge, but they also form the basis of simulations. The recent trend of digitization has complemented these models with data in all forms and variants, such as process monitoring time series, measured material characteristics, and stored production parameters. Theory-inspired machine learning combines the available models and data, reaping the benefits of established knowledge and the capabilities of modern, data-driven approaches. Compared to purely physics- or purely data-driven models, the models resulting from theory-inspired machine learning are often more accurate and less complex, extrapolate better, or allow faster model training or inference. In this short survey, we introduce and discuss several prominent approaches to theory-inspired machine learning and show how they were applied in the fields of welding, joining, additive manufacturing, and metal forming.</description><identifier>ISSN: 0043-2288</identifier><identifier>EISSN: 1878-6669</identifier><identifier>DOI: 10.1007/s40194-022-01270-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chemistry and Materials Science ; Data science ; First principles ; Machine learning ; Materials Science ; Metal forming ; Metallic Materials ; Review Article ; Solid Mechanics ; Theoretical and Applied Mechanics</subject><ispartof>Welding in the world, 2022-07, Vol.66 (7), p.1291-1304</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-626fbb21449427d80c953e752187b37e65e31c67751403e48014454465cc245f3</citedby><cites>FETCH-LOGICAL-c363t-626fbb21449427d80c953e752187b37e65e31c67751403e48014454465cc245f3</cites><orcidid>0000-0003-3257-743X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40194-022-01270-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40194-022-01270-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Hoffer, Johannes G.</creatorcontrib><creatorcontrib>Ofner, Andreas B.</creatorcontrib><creatorcontrib>Rohrhofer, Franz M.</creatorcontrib><creatorcontrib>Lovrić, Mario</creatorcontrib><creatorcontrib>Kern, Roman</creatorcontrib><creatorcontrib>Lindstaedt, Stefanie</creatorcontrib><creatorcontrib>Geiger, Bernhard C.</creatorcontrib><title>Theory-inspired machine learning—towards a synergy between knowledge and data</title><title>Welding in the world</title><addtitle>Weld World</addtitle><description>Most engineering domains abound with models derived from first principles that have beenproven to be effective for decades. These models are not only a valuable source of knowledge, but they also form the basis of simulations. The recent trend of digitization has complemented these models with data in all forms and variants, such as process monitoring time series, measured material characteristics, and stored production parameters. Theory-inspired machine learning combines the available models and data, reaping the benefits of established knowledge and the capabilities of modern, data-driven approaches. Compared to purely physics- or purely data-driven models, the models resulting from theory-inspired machine learning are often more accurate and less complex, extrapolate better, or allow faster model training or inference. In this short survey, we introduce and discuss several prominent approaches to theory-inspired machine learning and show how they were applied in the fields of welding, joining, additive manufacturing, and metal forming.</description><subject>Chemistry and Materials Science</subject><subject>Data science</subject><subject>First principles</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Metal forming</subject><subject>Metallic Materials</subject><subject>Review Article</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><issn>0043-2288</issn><issn>1878-6669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtOwzAQRS0EEuXxA6wisTaMH7GdJap4SZW6KWvLSSZpSusUO1WVrvgIvpAvIRAkdixGszn3zugQcsXghgHo2yiBZZIC5xQY10APR2TCjDZUKZUdkwmAFJRzY07JWYwrAMiGmZD5Yolt6Gnj47YJWCYbVywbj8kaXfCNrz_fP7p270IZE5fE3mOo-yTHbo_ok1ff7tdY1pg4Xyal69wFOancOuLl7z4nLw_3i-kTnc0fn6d3M1oIJTqquKrynDMpM8l1aaDIUoE65cPPudCoUhSsUFqnTIJAaWBAUylVWhRcppU4J9dj7za0bzuMnV21u-CHk5YrzQQYI8VA8ZEqQhtjwMpuQ7NxobcM7Lc4O4qzgzj7I84ehpAYQ3GAfY3hr_qf1BdkRXDg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Hoffer, Johannes G.</creator><creator>Ofner, Andreas B.</creator><creator>Rohrhofer, Franz M.</creator><creator>Lovrić, Mario</creator><creator>Kern, Roman</creator><creator>Lindstaedt, Stefanie</creator><creator>Geiger, Bernhard C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3257-743X</orcidid></search><sort><creationdate>20220701</creationdate><title>Theory-inspired machine learning—towards a synergy between knowledge and data</title><author>Hoffer, Johannes G. ; Ofner, Andreas B. ; Rohrhofer, Franz M. ; Lovrić, Mario ; Kern, Roman ; Lindstaedt, Stefanie ; Geiger, Bernhard C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-626fbb21449427d80c953e752187b37e65e31c67751403e48014454465cc245f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry and Materials Science</topic><topic>Data science</topic><topic>First principles</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Metal forming</topic><topic>Metallic Materials</topic><topic>Review Article</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffer, Johannes G.</creatorcontrib><creatorcontrib>Ofner, Andreas B.</creatorcontrib><creatorcontrib>Rohrhofer, Franz M.</creatorcontrib><creatorcontrib>Lovrić, Mario</creatorcontrib><creatorcontrib>Kern, Roman</creatorcontrib><creatorcontrib>Lindstaedt, Stefanie</creatorcontrib><creatorcontrib>Geiger, Bernhard C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Welding in the world</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffer, Johannes G.</au><au>Ofner, Andreas B.</au><au>Rohrhofer, Franz M.</au><au>Lovrić, Mario</au><au>Kern, Roman</au><au>Lindstaedt, Stefanie</au><au>Geiger, Bernhard C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory-inspired machine learning—towards a synergy between knowledge and data</atitle><jtitle>Welding in the world</jtitle><stitle>Weld World</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>66</volume><issue>7</issue><spage>1291</spage><epage>1304</epage><pages>1291-1304</pages><issn>0043-2288</issn><eissn>1878-6669</eissn><abstract>Most engineering domains abound with models derived from first principles that have beenproven to be effective for decades. These models are not only a valuable source of knowledge, but they also form the basis of simulations. The recent trend of digitization has complemented these models with data in all forms and variants, such as process monitoring time series, measured material characteristics, and stored production parameters. Theory-inspired machine learning combines the available models and data, reaping the benefits of established knowledge and the capabilities of modern, data-driven approaches. Compared to purely physics- or purely data-driven models, the models resulting from theory-inspired machine learning are often more accurate and less complex, extrapolate better, or allow faster model training or inference. In this short survey, we introduce and discuss several prominent approaches to theory-inspired machine learning and show how they were applied in the fields of welding, joining, additive manufacturing, and metal forming.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40194-022-01270-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3257-743X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-2288
ispartof Welding in the world, 2022-07, Vol.66 (7), p.1291-1304
issn 0043-2288
1878-6669
language eng
recordid cdi_proquest_journals_2671308843
source SpringerLink Journals - AutoHoldings
subjects Chemistry and Materials Science
Data science
First principles
Machine learning
Materials Science
Metal forming
Metallic Materials
Review Article
Solid Mechanics
Theoretical and Applied Mechanics
title Theory-inspired machine learning—towards a synergy between knowledge and data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory-inspired%20machine%20learning%E2%80%94towards%20a%20synergy%20between%20knowledge%20and%20data&rft.jtitle=Welding%20in%20the%20world&rft.au=Hoffer,%20Johannes%20G.&rft.date=2022-07-01&rft.volume=66&rft.issue=7&rft.spage=1291&rft.epage=1304&rft.pages=1291-1304&rft.issn=0043-2288&rft.eissn=1878-6669&rft_id=info:doi/10.1007/s40194-022-01270-z&rft_dat=%3Cproquest_cross%3E2671308843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671308843&rft_id=info:pmid/&rfr_iscdi=true