Triblock probe-polyA-probe electrochemical interfacial engineering for the sensitive analysis of RNAi plants

RNA interference (RNAi) is currently under fast development, which brings improved crop quality and new activity against pests in agriculture, by producing RNAs to specifically inhibit gene expression. This technology, in turn, creates a pressing need for sensitive and specific analytical methods of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2022-05, Vol.147 (11), p.2452-2459
Hauptverfasser: Zheng, Yu, Wang, Lele, Xu, Li, Li, Yan, Yang, Xue, Yang, Zhenzhou, Li, Lanying, Ding, Min, Ren, Shuzhen, Gong, Feiyan, Chang, Jinxue, Cao, Chengming, Wen, Yanli, Li, Liang, Liu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2459
container_issue 11
container_start_page 2452
container_title Analyst (London)
container_volume 147
creator Zheng, Yu
Wang, Lele
Xu, Li
Li, Yan
Yang, Xue
Yang, Zhenzhou
Li, Lanying
Ding, Min
Ren, Shuzhen
Gong, Feiyan
Chang, Jinxue
Cao, Chengming
Wen, Yanli
Li, Liang
Liu, Gang
description RNA interference (RNAi) is currently under fast development, which brings improved crop quality and new activity against pests in agriculture, by producing RNAs to specifically inhibit gene expression. This technology, in turn, creates a pressing need for sensitive and specific analytical methods of exogenous RNA molecules in genetically modified (GM) crops for safety assessment and regulation of RNAi plants and their products. In this work, we developed a novel RNA electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe containing three DNA segments: the central polyA segment combined onto a gold electrode surface with adjustable configuration and density, and two flanking DNA probes simultaneously captured the RNA targets through hybridization. Both the assembling and hybridization capability of our probe were demonstrated, and we systematically optimized the analytical conditions. Finally, the ultrasensitive detection of 10 fM RNA was realized without any amplification processes, and the specificity was verified by analyzing non-target maize samples. Our electrochemical biosensor provided a reliable and convenient measurement strategy for RNAi safety and quality assessment, and more importantly, our PAP (probe-polyA-probe) capturing probe exhibited an innovative design for the detection of large RNA molecules with complex secondary structures. RNA interference (RNAi) is under fast development in agriculture and brings new challenge for GMO analysis. We developed a electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe. Ultrasensitive detection of 10 fM RNA was realized.
doi_str_mv 10.1039/d2an00366j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2671279851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661083546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c97b75bd81d3d5b5247501551793591e05a2e9b37846caf1d2746281cbf464793</originalsourceid><addsrcrecordid>eNpd0UlLAzEUB_Agitbl4l0JeBFhNMskmTkWd5EKUs9DJvOmTU0nNZkK_fZG6wKe8pL8eLzkj9AhJeeU8PKiYbojhEs520ADymWeCcGKTTQg6TRjUuQ7aDfGWdpSIsg22uEJ0ILJAXLjYGvnzSteBF9DtvBuNcy-agwOTB-8mcLcGu2w7XoIrTY21dBNbAcQbDfBrQ-4nwKO0EXb23fAutNuFW3EvsXPo6HFC6e7Pu6jrVa7CAff6x56ubkeX95lj0-395fDx8xwrvrMlKpWom4K2vBG1ILlShAqBFUlFyUFIjSDsuaqyKXRLW2YyiUrqKnbXOYJ7aHTdd_0jrclxL6a22jApSHAL2PFpKSk4CKXiZ78ozO_DGn8T6UoU2UhaFJna2WCjzFAWy2CneuwqiipPjOorthw9JXBQ8LH3y2X9RyaX_rz6QkcrUGI5vf2L0T-AYtxitM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671279851</pqid></control><display><type>article</type><title>Triblock probe-polyA-probe electrochemical interfacial engineering for the sensitive analysis of RNAi plants</title><source>Royal Society Of Chemistry Journals</source><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>Alma/SFX Local Collection</source><creator>Zheng, Yu ; Wang, Lele ; Xu, Li ; Li, Yan ; Yang, Xue ; Yang, Zhenzhou ; Li, Lanying ; Ding, Min ; Ren, Shuzhen ; Gong, Feiyan ; Chang, Jinxue ; Cao, Chengming ; Wen, Yanli ; Li, Liang ; Liu, Gang</creator><creatorcontrib>Zheng, Yu ; Wang, Lele ; Xu, Li ; Li, Yan ; Yang, Xue ; Yang, Zhenzhou ; Li, Lanying ; Ding, Min ; Ren, Shuzhen ; Gong, Feiyan ; Chang, Jinxue ; Cao, Chengming ; Wen, Yanli ; Li, Liang ; Liu, Gang</creatorcontrib><description>RNA interference (RNAi) is currently under fast development, which brings improved crop quality and new activity against pests in agriculture, by producing RNAs to specifically inhibit gene expression. This technology, in turn, creates a pressing need for sensitive and specific analytical methods of exogenous RNA molecules in genetically modified (GM) crops for safety assessment and regulation of RNAi plants and their products. In this work, we developed a novel RNA electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe containing three DNA segments: the central polyA segment combined onto a gold electrode surface with adjustable configuration and density, and two flanking DNA probes simultaneously captured the RNA targets through hybridization. Both the assembling and hybridization capability of our probe were demonstrated, and we systematically optimized the analytical conditions. Finally, the ultrasensitive detection of 10 fM RNA was realized without any amplification processes, and the specificity was verified by analyzing non-target maize samples. Our electrochemical biosensor provided a reliable and convenient measurement strategy for RNAi safety and quality assessment, and more importantly, our PAP (probe-polyA-probe) capturing probe exhibited an innovative design for the detection of large RNA molecules with complex secondary structures. RNA interference (RNAi) is under fast development in agriculture and brings new challenge for GMO analysis. We developed a electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe. Ultrasensitive detection of 10 fM RNA was realized.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/d2an00366j</identifier><identifier>PMID: 35521826</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biosensors ; Corn ; Deoxyribonucleic acid ; DNA ; Gene expression ; Genetic modification ; Pests ; Quality assessment ; Ribonucleic acid ; RNA ; Segments</subject><ispartof>Analyst (London), 2022-05, Vol.147 (11), p.2452-2459</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c97b75bd81d3d5b5247501551793591e05a2e9b37846caf1d2746281cbf464793</citedby><cites>FETCH-LOGICAL-c337t-c97b75bd81d3d5b5247501551793591e05a2e9b37846caf1d2746281cbf464793</cites><orcidid>0000-0002-3997-1360 ; 0000-0002-0859-3985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2831,2832,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35521826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Yu</creatorcontrib><creatorcontrib>Wang, Lele</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Yang, Xue</creatorcontrib><creatorcontrib>Yang, Zhenzhou</creatorcontrib><creatorcontrib>Li, Lanying</creatorcontrib><creatorcontrib>Ding, Min</creatorcontrib><creatorcontrib>Ren, Shuzhen</creatorcontrib><creatorcontrib>Gong, Feiyan</creatorcontrib><creatorcontrib>Chang, Jinxue</creatorcontrib><creatorcontrib>Cao, Chengming</creatorcontrib><creatorcontrib>Wen, Yanli</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><title>Triblock probe-polyA-probe electrochemical interfacial engineering for the sensitive analysis of RNAi plants</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>RNA interference (RNAi) is currently under fast development, which brings improved crop quality and new activity against pests in agriculture, by producing RNAs to specifically inhibit gene expression. This technology, in turn, creates a pressing need for sensitive and specific analytical methods of exogenous RNA molecules in genetically modified (GM) crops for safety assessment and regulation of RNAi plants and their products. In this work, we developed a novel RNA electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe containing three DNA segments: the central polyA segment combined onto a gold electrode surface with adjustable configuration and density, and two flanking DNA probes simultaneously captured the RNA targets through hybridization. Both the assembling and hybridization capability of our probe were demonstrated, and we systematically optimized the analytical conditions. Finally, the ultrasensitive detection of 10 fM RNA was realized without any amplification processes, and the specificity was verified by analyzing non-target maize samples. Our electrochemical biosensor provided a reliable and convenient measurement strategy for RNAi safety and quality assessment, and more importantly, our PAP (probe-polyA-probe) capturing probe exhibited an innovative design for the detection of large RNA molecules with complex secondary structures. RNA interference (RNAi) is under fast development in agriculture and brings new challenge for GMO analysis. We developed a electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe. Ultrasensitive detection of 10 fM RNA was realized.</description><subject>Biosensors</subject><subject>Corn</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Gene expression</subject><subject>Genetic modification</subject><subject>Pests</subject><subject>Quality assessment</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Segments</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0UlLAzEUB_Agitbl4l0JeBFhNMskmTkWd5EKUs9DJvOmTU0nNZkK_fZG6wKe8pL8eLzkj9AhJeeU8PKiYbojhEs520ADymWeCcGKTTQg6TRjUuQ7aDfGWdpSIsg22uEJ0ILJAXLjYGvnzSteBF9DtvBuNcy-agwOTB-8mcLcGu2w7XoIrTY21dBNbAcQbDfBrQ-4nwKO0EXb23fAutNuFW3EvsXPo6HFC6e7Pu6jrVa7CAff6x56ubkeX95lj0-395fDx8xwrvrMlKpWom4K2vBG1ILlShAqBFUlFyUFIjSDsuaqyKXRLW2YyiUrqKnbXOYJ7aHTdd_0jrclxL6a22jApSHAL2PFpKSk4CKXiZ78ozO_DGn8T6UoU2UhaFJna2WCjzFAWy2CneuwqiipPjOorthw9JXBQ8LH3y2X9RyaX_rz6QkcrUGI5vf2L0T-AYtxitM</recordid><startdate>20220530</startdate><enddate>20220530</enddate><creator>Zheng, Yu</creator><creator>Wang, Lele</creator><creator>Xu, Li</creator><creator>Li, Yan</creator><creator>Yang, Xue</creator><creator>Yang, Zhenzhou</creator><creator>Li, Lanying</creator><creator>Ding, Min</creator><creator>Ren, Shuzhen</creator><creator>Gong, Feiyan</creator><creator>Chang, Jinxue</creator><creator>Cao, Chengming</creator><creator>Wen, Yanli</creator><creator>Li, Liang</creator><creator>Liu, Gang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3997-1360</orcidid><orcidid>https://orcid.org/0000-0002-0859-3985</orcidid></search><sort><creationdate>20220530</creationdate><title>Triblock probe-polyA-probe electrochemical interfacial engineering for the sensitive analysis of RNAi plants</title><author>Zheng, Yu ; Wang, Lele ; Xu, Li ; Li, Yan ; Yang, Xue ; Yang, Zhenzhou ; Li, Lanying ; Ding, Min ; Ren, Shuzhen ; Gong, Feiyan ; Chang, Jinxue ; Cao, Chengming ; Wen, Yanli ; Li, Liang ; Liu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c97b75bd81d3d5b5247501551793591e05a2e9b37846caf1d2746281cbf464793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biosensors</topic><topic>Corn</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Gene expression</topic><topic>Genetic modification</topic><topic>Pests</topic><topic>Quality assessment</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Segments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yu</creatorcontrib><creatorcontrib>Wang, Lele</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Yang, Xue</creatorcontrib><creatorcontrib>Yang, Zhenzhou</creatorcontrib><creatorcontrib>Li, Lanying</creatorcontrib><creatorcontrib>Ding, Min</creatorcontrib><creatorcontrib>Ren, Shuzhen</creatorcontrib><creatorcontrib>Gong, Feiyan</creatorcontrib><creatorcontrib>Chang, Jinxue</creatorcontrib><creatorcontrib>Cao, Chengming</creatorcontrib><creatorcontrib>Wen, Yanli</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yu</au><au>Wang, Lele</au><au>Xu, Li</au><au>Li, Yan</au><au>Yang, Xue</au><au>Yang, Zhenzhou</au><au>Li, Lanying</au><au>Ding, Min</au><au>Ren, Shuzhen</au><au>Gong, Feiyan</au><au>Chang, Jinxue</au><au>Cao, Chengming</au><au>Wen, Yanli</au><au>Li, Liang</au><au>Liu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triblock probe-polyA-probe electrochemical interfacial engineering for the sensitive analysis of RNAi plants</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2022-05-30</date><risdate>2022</risdate><volume>147</volume><issue>11</issue><spage>2452</spage><epage>2459</epage><pages>2452-2459</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>RNA interference (RNAi) is currently under fast development, which brings improved crop quality and new activity against pests in agriculture, by producing RNAs to specifically inhibit gene expression. This technology, in turn, creates a pressing need for sensitive and specific analytical methods of exogenous RNA molecules in genetically modified (GM) crops for safety assessment and regulation of RNAi plants and their products. In this work, we developed a novel RNA electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe containing three DNA segments: the central polyA segment combined onto a gold electrode surface with adjustable configuration and density, and two flanking DNA probes simultaneously captured the RNA targets through hybridization. Both the assembling and hybridization capability of our probe were demonstrated, and we systematically optimized the analytical conditions. Finally, the ultrasensitive detection of 10 fM RNA was realized without any amplification processes, and the specificity was verified by analyzing non-target maize samples. Our electrochemical biosensor provided a reliable and convenient measurement strategy for RNAi safety and quality assessment, and more importantly, our PAP (probe-polyA-probe) capturing probe exhibited an innovative design for the detection of large RNA molecules with complex secondary structures. RNA interference (RNAi) is under fast development in agriculture and brings new challenge for GMO analysis. We developed a electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe. Ultrasensitive detection of 10 fM RNA was realized.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35521826</pmid><doi>10.1039/d2an00366j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3997-1360</orcidid><orcidid>https://orcid.org/0000-0002-0859-3985</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2654
ispartof Analyst (London), 2022-05, Vol.147 (11), p.2452-2459
issn 0003-2654
1364-5528
language eng
recordid cdi_proquest_journals_2671279851
source Royal Society Of Chemistry Journals; Royal Society of Chemistry Journals Archive (1841-2007); Alma/SFX Local Collection
subjects Biosensors
Corn
Deoxyribonucleic acid
DNA
Gene expression
Genetic modification
Pests
Quality assessment
Ribonucleic acid
RNA
Segments
title Triblock probe-polyA-probe electrochemical interfacial engineering for the sensitive analysis of RNAi plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triblock%20probe-polyA-probe%20electrochemical%20interfacial%20engineering%20for%20the%20sensitive%20analysis%20of%20RNAi%20plants&rft.jtitle=Analyst%20(London)&rft.au=Zheng,%20Yu&rft.date=2022-05-30&rft.volume=147&rft.issue=11&rft.spage=2452&rft.epage=2459&rft.pages=2452-2459&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/d2an00366j&rft_dat=%3Cproquest_pubme%3E2661083546%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671279851&rft_id=info:pmid/35521826&rfr_iscdi=true