Triblock probe-polyA-probe electrochemical interfacial engineering for the sensitive analysis of RNAi plants
RNA interference (RNAi) is currently under fast development, which brings improved crop quality and new activity against pests in agriculture, by producing RNAs to specifically inhibit gene expression. This technology, in turn, creates a pressing need for sensitive and specific analytical methods of...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2022-05, Vol.147 (11), p.2452-2459 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2459 |
---|---|
container_issue | 11 |
container_start_page | 2452 |
container_title | Analyst (London) |
container_volume | 147 |
creator | Zheng, Yu Wang, Lele Xu, Li Li, Yan Yang, Xue Yang, Zhenzhou Li, Lanying Ding, Min Ren, Shuzhen Gong, Feiyan Chang, Jinxue Cao, Chengming Wen, Yanli Li, Liang Liu, Gang |
description | RNA interference (RNAi) is currently under fast development, which brings improved crop quality and new activity against pests in agriculture, by producing RNAs to specifically inhibit gene expression. This technology, in turn, creates a pressing need for sensitive and specific analytical methods of exogenous RNA molecules in genetically modified (GM) crops for safety assessment and regulation of RNAi plants and their products. In this work, we developed a novel RNA electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe containing three DNA segments: the central polyA segment combined onto a gold electrode surface with adjustable configuration and density, and two flanking DNA probes simultaneously captured the RNA targets through hybridization. Both the assembling and hybridization capability of our probe were demonstrated, and we systematically optimized the analytical conditions. Finally, the ultrasensitive detection of 10 fM RNA was realized without any amplification processes, and the specificity was verified by analyzing non-target maize samples. Our electrochemical biosensor provided a reliable and convenient measurement strategy for RNAi safety and quality assessment, and more importantly, our PAP (probe-polyA-probe) capturing probe exhibited an innovative design for the detection of large RNA molecules with complex secondary structures.
RNA interference (RNAi) is under fast development in agriculture and brings new challenge for GMO analysis. We developed a electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe. Ultrasensitive detection of 10 fM RNA was realized. |
doi_str_mv | 10.1039/d2an00366j |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2671279851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661083546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c97b75bd81d3d5b5247501551793591e05a2e9b37846caf1d2746281cbf464793</originalsourceid><addsrcrecordid>eNpd0UlLAzEUB_Agitbl4l0JeBFhNMskmTkWd5EKUs9DJvOmTU0nNZkK_fZG6wKe8pL8eLzkj9AhJeeU8PKiYbojhEs520ADymWeCcGKTTQg6TRjUuQ7aDfGWdpSIsg22uEJ0ILJAXLjYGvnzSteBF9DtvBuNcy-agwOTB-8mcLcGu2w7XoIrTY21dBNbAcQbDfBrQ-4nwKO0EXb23fAutNuFW3EvsXPo6HFC6e7Pu6jrVa7CAff6x56ubkeX95lj0-395fDx8xwrvrMlKpWom4K2vBG1ILlShAqBFUlFyUFIjSDsuaqyKXRLW2YyiUrqKnbXOYJ7aHTdd_0jrclxL6a22jApSHAL2PFpKSk4CKXiZ78ozO_DGn8T6UoU2UhaFJna2WCjzFAWy2CneuwqiipPjOorthw9JXBQ8LH3y2X9RyaX_rz6QkcrUGI5vf2L0T-AYtxitM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671279851</pqid></control><display><type>article</type><title>Triblock probe-polyA-probe electrochemical interfacial engineering for the sensitive analysis of RNAi plants</title><source>Royal Society Of Chemistry Journals</source><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>Alma/SFX Local Collection</source><creator>Zheng, Yu ; Wang, Lele ; Xu, Li ; Li, Yan ; Yang, Xue ; Yang, Zhenzhou ; Li, Lanying ; Ding, Min ; Ren, Shuzhen ; Gong, Feiyan ; Chang, Jinxue ; Cao, Chengming ; Wen, Yanli ; Li, Liang ; Liu, Gang</creator><creatorcontrib>Zheng, Yu ; Wang, Lele ; Xu, Li ; Li, Yan ; Yang, Xue ; Yang, Zhenzhou ; Li, Lanying ; Ding, Min ; Ren, Shuzhen ; Gong, Feiyan ; Chang, Jinxue ; Cao, Chengming ; Wen, Yanli ; Li, Liang ; Liu, Gang</creatorcontrib><description>RNA interference (RNAi) is currently under fast development, which brings improved crop quality and new activity against pests in agriculture, by producing RNAs to specifically inhibit gene expression. This technology, in turn, creates a pressing need for sensitive and specific analytical methods of exogenous RNA molecules in genetically modified (GM) crops for safety assessment and regulation of RNAi plants and their products. In this work, we developed a novel RNA electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe containing three DNA segments: the central polyA segment combined onto a gold electrode surface with adjustable configuration and density, and two flanking DNA probes simultaneously captured the RNA targets through hybridization. Both the assembling and hybridization capability of our probe were demonstrated, and we systematically optimized the analytical conditions. Finally, the ultrasensitive detection of 10 fM RNA was realized without any amplification processes, and the specificity was verified by analyzing non-target maize samples. Our electrochemical biosensor provided a reliable and convenient measurement strategy for RNAi safety and quality assessment, and more importantly, our PAP (probe-polyA-probe) capturing probe exhibited an innovative design for the detection of large RNA molecules with complex secondary structures.
RNA interference (RNAi) is under fast development in agriculture and brings new challenge for GMO analysis. We developed a electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe. Ultrasensitive detection of 10 fM RNA was realized.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/d2an00366j</identifier><identifier>PMID: 35521826</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biosensors ; Corn ; Deoxyribonucleic acid ; DNA ; Gene expression ; Genetic modification ; Pests ; Quality assessment ; Ribonucleic acid ; RNA ; Segments</subject><ispartof>Analyst (London), 2022-05, Vol.147 (11), p.2452-2459</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c97b75bd81d3d5b5247501551793591e05a2e9b37846caf1d2746281cbf464793</citedby><cites>FETCH-LOGICAL-c337t-c97b75bd81d3d5b5247501551793591e05a2e9b37846caf1d2746281cbf464793</cites><orcidid>0000-0002-3997-1360 ; 0000-0002-0859-3985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2831,2832,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35521826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Yu</creatorcontrib><creatorcontrib>Wang, Lele</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Yang, Xue</creatorcontrib><creatorcontrib>Yang, Zhenzhou</creatorcontrib><creatorcontrib>Li, Lanying</creatorcontrib><creatorcontrib>Ding, Min</creatorcontrib><creatorcontrib>Ren, Shuzhen</creatorcontrib><creatorcontrib>Gong, Feiyan</creatorcontrib><creatorcontrib>Chang, Jinxue</creatorcontrib><creatorcontrib>Cao, Chengming</creatorcontrib><creatorcontrib>Wen, Yanli</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><title>Triblock probe-polyA-probe electrochemical interfacial engineering for the sensitive analysis of RNAi plants</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>RNA interference (RNAi) is currently under fast development, which brings improved crop quality and new activity against pests in agriculture, by producing RNAs to specifically inhibit gene expression. This technology, in turn, creates a pressing need for sensitive and specific analytical methods of exogenous RNA molecules in genetically modified (GM) crops for safety assessment and regulation of RNAi plants and their products. In this work, we developed a novel RNA electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe containing three DNA segments: the central polyA segment combined onto a gold electrode surface with adjustable configuration and density, and two flanking DNA probes simultaneously captured the RNA targets through hybridization. Both the assembling and hybridization capability of our probe were demonstrated, and we systematically optimized the analytical conditions. Finally, the ultrasensitive detection of 10 fM RNA was realized without any amplification processes, and the specificity was verified by analyzing non-target maize samples. Our electrochemical biosensor provided a reliable and convenient measurement strategy for RNAi safety and quality assessment, and more importantly, our PAP (probe-polyA-probe) capturing probe exhibited an innovative design for the detection of large RNA molecules with complex secondary structures.
RNA interference (RNAi) is under fast development in agriculture and brings new challenge for GMO analysis. We developed a electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe. Ultrasensitive detection of 10 fM RNA was realized.</description><subject>Biosensors</subject><subject>Corn</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Gene expression</subject><subject>Genetic modification</subject><subject>Pests</subject><subject>Quality assessment</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Segments</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0UlLAzEUB_Agitbl4l0JeBFhNMskmTkWd5EKUs9DJvOmTU0nNZkK_fZG6wKe8pL8eLzkj9AhJeeU8PKiYbojhEs520ADymWeCcGKTTQg6TRjUuQ7aDfGWdpSIsg22uEJ0ILJAXLjYGvnzSteBF9DtvBuNcy-agwOTB-8mcLcGu2w7XoIrTY21dBNbAcQbDfBrQ-4nwKO0EXb23fAutNuFW3EvsXPo6HFC6e7Pu6jrVa7CAff6x56ubkeX95lj0-395fDx8xwrvrMlKpWom4K2vBG1ILlShAqBFUlFyUFIjSDsuaqyKXRLW2YyiUrqKnbXOYJ7aHTdd_0jrclxL6a22jApSHAL2PFpKSk4CKXiZ78ozO_DGn8T6UoU2UhaFJna2WCjzFAWy2CneuwqiipPjOorthw9JXBQ8LH3y2X9RyaX_rz6QkcrUGI5vf2L0T-AYtxitM</recordid><startdate>20220530</startdate><enddate>20220530</enddate><creator>Zheng, Yu</creator><creator>Wang, Lele</creator><creator>Xu, Li</creator><creator>Li, Yan</creator><creator>Yang, Xue</creator><creator>Yang, Zhenzhou</creator><creator>Li, Lanying</creator><creator>Ding, Min</creator><creator>Ren, Shuzhen</creator><creator>Gong, Feiyan</creator><creator>Chang, Jinxue</creator><creator>Cao, Chengming</creator><creator>Wen, Yanli</creator><creator>Li, Liang</creator><creator>Liu, Gang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3997-1360</orcidid><orcidid>https://orcid.org/0000-0002-0859-3985</orcidid></search><sort><creationdate>20220530</creationdate><title>Triblock probe-polyA-probe electrochemical interfacial engineering for the sensitive analysis of RNAi plants</title><author>Zheng, Yu ; Wang, Lele ; Xu, Li ; Li, Yan ; Yang, Xue ; Yang, Zhenzhou ; Li, Lanying ; Ding, Min ; Ren, Shuzhen ; Gong, Feiyan ; Chang, Jinxue ; Cao, Chengming ; Wen, Yanli ; Li, Liang ; Liu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c97b75bd81d3d5b5247501551793591e05a2e9b37846caf1d2746281cbf464793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biosensors</topic><topic>Corn</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Gene expression</topic><topic>Genetic modification</topic><topic>Pests</topic><topic>Quality assessment</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Segments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yu</creatorcontrib><creatorcontrib>Wang, Lele</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Yang, Xue</creatorcontrib><creatorcontrib>Yang, Zhenzhou</creatorcontrib><creatorcontrib>Li, Lanying</creatorcontrib><creatorcontrib>Ding, Min</creatorcontrib><creatorcontrib>Ren, Shuzhen</creatorcontrib><creatorcontrib>Gong, Feiyan</creatorcontrib><creatorcontrib>Chang, Jinxue</creatorcontrib><creatorcontrib>Cao, Chengming</creatorcontrib><creatorcontrib>Wen, Yanli</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yu</au><au>Wang, Lele</au><au>Xu, Li</au><au>Li, Yan</au><au>Yang, Xue</au><au>Yang, Zhenzhou</au><au>Li, Lanying</au><au>Ding, Min</au><au>Ren, Shuzhen</au><au>Gong, Feiyan</au><au>Chang, Jinxue</au><au>Cao, Chengming</au><au>Wen, Yanli</au><au>Li, Liang</au><au>Liu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triblock probe-polyA-probe electrochemical interfacial engineering for the sensitive analysis of RNAi plants</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2022-05-30</date><risdate>2022</risdate><volume>147</volume><issue>11</issue><spage>2452</spage><epage>2459</epage><pages>2452-2459</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>RNA interference (RNAi) is currently under fast development, which brings improved crop quality and new activity against pests in agriculture, by producing RNAs to specifically inhibit gene expression. This technology, in turn, creates a pressing need for sensitive and specific analytical methods of exogenous RNA molecules in genetically modified (GM) crops for safety assessment and regulation of RNAi plants and their products. In this work, we developed a novel RNA electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe containing three DNA segments: the central polyA segment combined onto a gold electrode surface with adjustable configuration and density, and two flanking DNA probes simultaneously captured the RNA targets through hybridization. Both the assembling and hybridization capability of our probe were demonstrated, and we systematically optimized the analytical conditions. Finally, the ultrasensitive detection of 10 fM RNA was realized without any amplification processes, and the specificity was verified by analyzing non-target maize samples. Our electrochemical biosensor provided a reliable and convenient measurement strategy for RNAi safety and quality assessment, and more importantly, our PAP (probe-polyA-probe) capturing probe exhibited an innovative design for the detection of large RNA molecules with complex secondary structures.
RNA interference (RNAi) is under fast development in agriculture and brings new challenge for GMO analysis. We developed a electrochemical biosensor for the analysis of GM maize samples based on a polyA-DNA capturing probe. Ultrasensitive detection of 10 fM RNA was realized.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35521826</pmid><doi>10.1039/d2an00366j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3997-1360</orcidid><orcidid>https://orcid.org/0000-0002-0859-3985</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2654 |
ispartof | Analyst (London), 2022-05, Vol.147 (11), p.2452-2459 |
issn | 0003-2654 1364-5528 |
language | eng |
recordid | cdi_proquest_journals_2671279851 |
source | Royal Society Of Chemistry Journals; Royal Society of Chemistry Journals Archive (1841-2007); Alma/SFX Local Collection |
subjects | Biosensors Corn Deoxyribonucleic acid DNA Gene expression Genetic modification Pests Quality assessment Ribonucleic acid RNA Segments |
title | Triblock probe-polyA-probe electrochemical interfacial engineering for the sensitive analysis of RNAi plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triblock%20probe-polyA-probe%20electrochemical%20interfacial%20engineering%20for%20the%20sensitive%20analysis%20of%20RNAi%20plants&rft.jtitle=Analyst%20(London)&rft.au=Zheng,%20Yu&rft.date=2022-05-30&rft.volume=147&rft.issue=11&rft.spage=2452&rft.epage=2459&rft.pages=2452-2459&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/d2an00366j&rft_dat=%3Cproquest_pubme%3E2661083546%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671279851&rft_id=info:pmid/35521826&rfr_iscdi=true |