Fuzzy fixed point results via simulation functions
We inaugurate two concepts, admissible hybrid fuzzy Z -contractions and hybrid fuzzy Z -contractions in the bodywork of b -metric spaces and establish sufficient criteria for fuzzy fixed points for such contractions. Nontrivial illustrations are constructed to support the hypotheses of our main noti...
Gespeichert in:
Veröffentlicht in: | Mathematical Sciences 2022-06, Vol.16 (2), p.137-148 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 2 |
container_start_page | 137 |
container_title | Mathematical Sciences |
container_volume | 16 |
creator | Mohammed, Shehu Shagari Fulatan, Ibrahim Aliyu |
description | We inaugurate two concepts, admissible hybrid fuzzy
Z
-contractions and hybrid fuzzy
Z
-contractions in the bodywork of
b
-metric spaces and establish sufficient criteria for fuzzy fixed points for such contractions. Nontrivial illustrations are constructed to support the hypotheses of our main notions. From application point of view, a handful of fixed point results of
b
-metric spaces endowed with partial ordering and graph are deduced. The ideas established herein unify and complement several well-known crisp and fuzzy fixed point theorems in the framework of both single-valued and set-valued mappings involving either linear or nonlinear contractions. A few important consequences of our main theorem are highlighted and analysed by using various forms of simulation functions. |
doi_str_mv | 10.1007/s40096-021-00405-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2671102920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A705431950</galeid><sourcerecordid>A705431950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-7677ad04f50e9f2fe37b66014eca26a0cd57977dcb0ea54581ece92e66df36033</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWGpfwNOC59RJdpM0x1KsCoIXPYc0Oykp292a7Irt05u6gjdnDjMM_zcz_ITcMpgzAHWfKgAtKXBGASoQVFyQCeeCUVUJeZl7gAVlpdDXZJbSDnIopaESE8LXw-l0LHz4wro4dKHti4hpaPpUfAZbpLAfGtuHri380Lpzk27IlbdNwtlvnZL39cPb6om-vD4-r5Yv1PHFoqdKKmVrqLwA1J57LNVGSmAVOsulBVcLpZWq3QbQikosGDrUHKWsfSmhLKfkbtx7iN3HgKk3u26IbT5puFSMAdccsmo-qra2QRNa3_XRupw17oPrWvQhz5cKRFUyLc4AHwEXu5QienOIYW_j0TAwZz_N6KfJfpofP43IUDlCKYvbLca_X_6hvgFpkHbj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671102920</pqid></control><display><type>article</type><title>Fuzzy fixed point results via simulation functions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mohammed, Shehu Shagari ; Fulatan, Ibrahim Aliyu</creator><creatorcontrib>Mohammed, Shehu Shagari ; Fulatan, Ibrahim Aliyu</creatorcontrib><description>We inaugurate two concepts, admissible hybrid fuzzy
Z
-contractions and hybrid fuzzy
Z
-contractions in the bodywork of
b
-metric spaces and establish sufficient criteria for fuzzy fixed points for such contractions. Nontrivial illustrations are constructed to support the hypotheses of our main notions. From application point of view, a handful of fixed point results of
b
-metric spaces endowed with partial ordering and graph are deduced. The ideas established herein unify and complement several well-known crisp and fuzzy fixed point theorems in the framework of both single-valued and set-valued mappings involving either linear or nonlinear contractions. A few important consequences of our main theorem are highlighted and analysed by using various forms of simulation functions.</description><identifier>ISSN: 2008-1359</identifier><identifier>EISSN: 2251-7456</identifier><identifier>DOI: 10.1007/s40096-021-00405-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Fixed points (mathematics) ; Fuzzy sets ; Hypotheses ; Mathematics ; Mathematics and Statistics ; Metric space ; Original Research ; Simulation ; Theorems</subject><ispartof>Mathematical Sciences, 2022-06, Vol.16 (2), p.137-148</ispartof><rights>Islamic Azad University 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Islamic Azad University 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-7677ad04f50e9f2fe37b66014eca26a0cd57977dcb0ea54581ece92e66df36033</citedby><cites>FETCH-LOGICAL-c288t-7677ad04f50e9f2fe37b66014eca26a0cd57977dcb0ea54581ece92e66df36033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40096-021-00405-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40096-021-00405-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mohammed, Shehu Shagari</creatorcontrib><creatorcontrib>Fulatan, Ibrahim Aliyu</creatorcontrib><title>Fuzzy fixed point results via simulation functions</title><title>Mathematical Sciences</title><addtitle>Math Sci</addtitle><description>We inaugurate two concepts, admissible hybrid fuzzy
Z
-contractions and hybrid fuzzy
Z
-contractions in the bodywork of
b
-metric spaces and establish sufficient criteria for fuzzy fixed points for such contractions. Nontrivial illustrations are constructed to support the hypotheses of our main notions. From application point of view, a handful of fixed point results of
b
-metric spaces endowed with partial ordering and graph are deduced. The ideas established herein unify and complement several well-known crisp and fuzzy fixed point theorems in the framework of both single-valued and set-valued mappings involving either linear or nonlinear contractions. A few important consequences of our main theorem are highlighted and analysed by using various forms of simulation functions.</description><subject>Applications of Mathematics</subject><subject>Fixed points (mathematics)</subject><subject>Fuzzy sets</subject><subject>Hypotheses</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Original Research</subject><subject>Simulation</subject><subject>Theorems</subject><issn>2008-1359</issn><issn>2251-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFKAzEQhoMoWGpfwNOC59RJdpM0x1KsCoIXPYc0Oykp292a7Irt05u6gjdnDjMM_zcz_ITcMpgzAHWfKgAtKXBGASoQVFyQCeeCUVUJeZl7gAVlpdDXZJbSDnIopaESE8LXw-l0LHz4wro4dKHti4hpaPpUfAZbpLAfGtuHri380Lpzk27IlbdNwtlvnZL39cPb6om-vD4-r5Yv1PHFoqdKKmVrqLwA1J57LNVGSmAVOsulBVcLpZWq3QbQikosGDrUHKWsfSmhLKfkbtx7iN3HgKk3u26IbT5puFSMAdccsmo-qra2QRNa3_XRupw17oPrWvQhz5cKRFUyLc4AHwEXu5QienOIYW_j0TAwZz_N6KfJfpofP43IUDlCKYvbLca_X_6hvgFpkHbj</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Mohammed, Shehu Shagari</creator><creator>Fulatan, Ibrahim Aliyu</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220601</creationdate><title>Fuzzy fixed point results via simulation functions</title><author>Mohammed, Shehu Shagari ; Fulatan, Ibrahim Aliyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-7677ad04f50e9f2fe37b66014eca26a0cd57977dcb0ea54581ece92e66df36033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Fixed points (mathematics)</topic><topic>Fuzzy sets</topic><topic>Hypotheses</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Original Research</topic><topic>Simulation</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, Shehu Shagari</creatorcontrib><creatorcontrib>Fulatan, Ibrahim Aliyu</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammed, Shehu Shagari</au><au>Fulatan, Ibrahim Aliyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy fixed point results via simulation functions</atitle><jtitle>Mathematical Sciences</jtitle><stitle>Math Sci</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>137</spage><epage>148</epage><pages>137-148</pages><issn>2008-1359</issn><eissn>2251-7456</eissn><abstract>We inaugurate two concepts, admissible hybrid fuzzy
Z
-contractions and hybrid fuzzy
Z
-contractions in the bodywork of
b
-metric spaces and establish sufficient criteria for fuzzy fixed points for such contractions. Nontrivial illustrations are constructed to support the hypotheses of our main notions. From application point of view, a handful of fixed point results of
b
-metric spaces endowed with partial ordering and graph are deduced. The ideas established herein unify and complement several well-known crisp and fuzzy fixed point theorems in the framework of both single-valued and set-valued mappings involving either linear or nonlinear contractions. A few important consequences of our main theorem are highlighted and analysed by using various forms of simulation functions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40096-021-00405-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2008-1359 |
ispartof | Mathematical Sciences, 2022-06, Vol.16 (2), p.137-148 |
issn | 2008-1359 2251-7456 |
language | eng |
recordid | cdi_proquest_journals_2671102920 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Fixed points (mathematics) Fuzzy sets Hypotheses Mathematics Mathematics and Statistics Metric space Original Research Simulation Theorems |
title | Fuzzy fixed point results via simulation functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20fixed%20point%20results%20via%20simulation%20functions&rft.jtitle=Mathematical%20Sciences&rft.au=Mohammed,%20Shehu%20Shagari&rft.date=2022-06-01&rft.volume=16&rft.issue=2&rft.spage=137&rft.epage=148&rft.pages=137-148&rft.issn=2008-1359&rft.eissn=2251-7456&rft_id=info:doi/10.1007/s40096-021-00405-5&rft_dat=%3Cgale_proqu%3EA705431950%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671102920&rft_id=info:pmid/&rft_galeid=A705431950&rfr_iscdi=true |