Fuzzy fixed point results via simulation functions

We inaugurate two concepts, admissible hybrid fuzzy Z -contractions and hybrid fuzzy Z -contractions in the bodywork of b -metric spaces and establish sufficient criteria for fuzzy fixed points for such contractions. Nontrivial illustrations are constructed to support the hypotheses of our main noti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Sciences 2022-06, Vol.16 (2), p.137-148
Hauptverfasser: Mohammed, Shehu Shagari, Fulatan, Ibrahim Aliyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 2
container_start_page 137
container_title Mathematical Sciences
container_volume 16
creator Mohammed, Shehu Shagari
Fulatan, Ibrahim Aliyu
description We inaugurate two concepts, admissible hybrid fuzzy Z -contractions and hybrid fuzzy Z -contractions in the bodywork of b -metric spaces and establish sufficient criteria for fuzzy fixed points for such contractions. Nontrivial illustrations are constructed to support the hypotheses of our main notions. From application point of view, a handful of fixed point results of b -metric spaces endowed with partial ordering and graph are deduced. The ideas established herein unify and complement several well-known crisp and fuzzy fixed point theorems in the framework of both single-valued and set-valued mappings involving either linear or nonlinear contractions. A few important consequences of our main theorem are highlighted and analysed by using various forms of simulation functions.
doi_str_mv 10.1007/s40096-021-00405-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2671102920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A705431950</galeid><sourcerecordid>A705431950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-7677ad04f50e9f2fe37b66014eca26a0cd57977dcb0ea54581ece92e66df36033</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWGpfwNOC59RJdpM0x1KsCoIXPYc0Oykp292a7Irt05u6gjdnDjMM_zcz_ITcMpgzAHWfKgAtKXBGASoQVFyQCeeCUVUJeZl7gAVlpdDXZJbSDnIopaESE8LXw-l0LHz4wro4dKHti4hpaPpUfAZbpLAfGtuHri380Lpzk27IlbdNwtlvnZL39cPb6om-vD4-r5Yv1PHFoqdKKmVrqLwA1J57LNVGSmAVOsulBVcLpZWq3QbQikosGDrUHKWsfSmhLKfkbtx7iN3HgKk3u26IbT5puFSMAdccsmo-qra2QRNa3_XRupw17oPrWvQhz5cKRFUyLc4AHwEXu5QienOIYW_j0TAwZz_N6KfJfpofP43IUDlCKYvbLca_X_6hvgFpkHbj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671102920</pqid></control><display><type>article</type><title>Fuzzy fixed point results via simulation functions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mohammed, Shehu Shagari ; Fulatan, Ibrahim Aliyu</creator><creatorcontrib>Mohammed, Shehu Shagari ; Fulatan, Ibrahim Aliyu</creatorcontrib><description>We inaugurate two concepts, admissible hybrid fuzzy Z -contractions and hybrid fuzzy Z -contractions in the bodywork of b -metric spaces and establish sufficient criteria for fuzzy fixed points for such contractions. Nontrivial illustrations are constructed to support the hypotheses of our main notions. From application point of view, a handful of fixed point results of b -metric spaces endowed with partial ordering and graph are deduced. The ideas established herein unify and complement several well-known crisp and fuzzy fixed point theorems in the framework of both single-valued and set-valued mappings involving either linear or nonlinear contractions. A few important consequences of our main theorem are highlighted and analysed by using various forms of simulation functions.</description><identifier>ISSN: 2008-1359</identifier><identifier>EISSN: 2251-7456</identifier><identifier>DOI: 10.1007/s40096-021-00405-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Fixed points (mathematics) ; Fuzzy sets ; Hypotheses ; Mathematics ; Mathematics and Statistics ; Metric space ; Original Research ; Simulation ; Theorems</subject><ispartof>Mathematical Sciences, 2022-06, Vol.16 (2), p.137-148</ispartof><rights>Islamic Azad University 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Islamic Azad University 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-7677ad04f50e9f2fe37b66014eca26a0cd57977dcb0ea54581ece92e66df36033</citedby><cites>FETCH-LOGICAL-c288t-7677ad04f50e9f2fe37b66014eca26a0cd57977dcb0ea54581ece92e66df36033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40096-021-00405-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40096-021-00405-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mohammed, Shehu Shagari</creatorcontrib><creatorcontrib>Fulatan, Ibrahim Aliyu</creatorcontrib><title>Fuzzy fixed point results via simulation functions</title><title>Mathematical Sciences</title><addtitle>Math Sci</addtitle><description>We inaugurate two concepts, admissible hybrid fuzzy Z -contractions and hybrid fuzzy Z -contractions in the bodywork of b -metric spaces and establish sufficient criteria for fuzzy fixed points for such contractions. Nontrivial illustrations are constructed to support the hypotheses of our main notions. From application point of view, a handful of fixed point results of b -metric spaces endowed with partial ordering and graph are deduced. The ideas established herein unify and complement several well-known crisp and fuzzy fixed point theorems in the framework of both single-valued and set-valued mappings involving either linear or nonlinear contractions. A few important consequences of our main theorem are highlighted and analysed by using various forms of simulation functions.</description><subject>Applications of Mathematics</subject><subject>Fixed points (mathematics)</subject><subject>Fuzzy sets</subject><subject>Hypotheses</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Original Research</subject><subject>Simulation</subject><subject>Theorems</subject><issn>2008-1359</issn><issn>2251-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFKAzEQhoMoWGpfwNOC59RJdpM0x1KsCoIXPYc0Oykp292a7Irt05u6gjdnDjMM_zcz_ITcMpgzAHWfKgAtKXBGASoQVFyQCeeCUVUJeZl7gAVlpdDXZJbSDnIopaESE8LXw-l0LHz4wro4dKHti4hpaPpUfAZbpLAfGtuHri380Lpzk27IlbdNwtlvnZL39cPb6om-vD4-r5Yv1PHFoqdKKmVrqLwA1J57LNVGSmAVOsulBVcLpZWq3QbQikosGDrUHKWsfSmhLKfkbtx7iN3HgKk3u26IbT5puFSMAdccsmo-qra2QRNa3_XRupw17oPrWvQhz5cKRFUyLc4AHwEXu5QienOIYW_j0TAwZz_N6KfJfpofP43IUDlCKYvbLca_X_6hvgFpkHbj</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Mohammed, Shehu Shagari</creator><creator>Fulatan, Ibrahim Aliyu</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220601</creationdate><title>Fuzzy fixed point results via simulation functions</title><author>Mohammed, Shehu Shagari ; Fulatan, Ibrahim Aliyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-7677ad04f50e9f2fe37b66014eca26a0cd57977dcb0ea54581ece92e66df36033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Fixed points (mathematics)</topic><topic>Fuzzy sets</topic><topic>Hypotheses</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Original Research</topic><topic>Simulation</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, Shehu Shagari</creatorcontrib><creatorcontrib>Fulatan, Ibrahim Aliyu</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammed, Shehu Shagari</au><au>Fulatan, Ibrahim Aliyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy fixed point results via simulation functions</atitle><jtitle>Mathematical Sciences</jtitle><stitle>Math Sci</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>137</spage><epage>148</epage><pages>137-148</pages><issn>2008-1359</issn><eissn>2251-7456</eissn><abstract>We inaugurate two concepts, admissible hybrid fuzzy Z -contractions and hybrid fuzzy Z -contractions in the bodywork of b -metric spaces and establish sufficient criteria for fuzzy fixed points for such contractions. Nontrivial illustrations are constructed to support the hypotheses of our main notions. From application point of view, a handful of fixed point results of b -metric spaces endowed with partial ordering and graph are deduced. The ideas established herein unify and complement several well-known crisp and fuzzy fixed point theorems in the framework of both single-valued and set-valued mappings involving either linear or nonlinear contractions. A few important consequences of our main theorem are highlighted and analysed by using various forms of simulation functions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40096-021-00405-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2008-1359
ispartof Mathematical Sciences, 2022-06, Vol.16 (2), p.137-148
issn 2008-1359
2251-7456
language eng
recordid cdi_proquest_journals_2671102920
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Fixed points (mathematics)
Fuzzy sets
Hypotheses
Mathematics
Mathematics and Statistics
Metric space
Original Research
Simulation
Theorems
title Fuzzy fixed point results via simulation functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20fixed%20point%20results%20via%20simulation%20functions&rft.jtitle=Mathematical%20Sciences&rft.au=Mohammed,%20Shehu%20Shagari&rft.date=2022-06-01&rft.volume=16&rft.issue=2&rft.spage=137&rft.epage=148&rft.pages=137-148&rft.issn=2008-1359&rft.eissn=2251-7456&rft_id=info:doi/10.1007/s40096-021-00405-5&rft_dat=%3Cgale_proqu%3EA705431950%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671102920&rft_id=info:pmid/&rft_galeid=A705431950&rfr_iscdi=true