Knowledge Based on Rough Approximations and Ideals
Topology is a beneficial structure to study the approximation operators in the rough set theory. In this work, we first introduce six new types of neighborhoods with respect to finite binary relations. We study their main properties and show under what conditions they are equivalent. Then we applied...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022-05, Vol.2022, p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2022 |
creator | Hosny, Rodyna A. Al-shami, Tareq M. Azzam, A. A. Nawar, Ashraf S. |
description | Topology is a beneficial structure to study the approximation operators in the rough set theory. In this work, we first introduce six new types of neighborhoods with respect to finite binary relations. We study their main properties and show under what conditions they are equivalent. Then we applied these types of neighborhoods to initiate some topological spaces that are utilized to define new types of rough set models. We compare these models and prove that the best accuracy measures are obtained in the cases of i and i. Also, we illustrate that our approaches are better than those defined under one arbitrary relation. To improve rough sets’ accuracy, we define some topological spaces using the idea of ideals. With the help of examples, we demonstrate that our methods are better than some methods studied in some published literature. Finally, we give a real-life application showing the merits of the approaches followed in this manuscript. |
doi_str_mv | 10.1155/2022/3766286 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2671101991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671101991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-8cae9f43fe7c91780f8993f80676be1ee5a59ebaf5ac4d99af2f66ae9fa48cff3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKdv_oCCj1qXmzZp8jjH1OFAEAXfQtbebB2zqUnL9N-b0T37dO7Dd-45HEKugd4DcD5hlLFJVgjBpDghI-AiSznkxWm8KctTYNnnObkIYUspAw5yRNhL4_Y7rNaYPJiAVeKa5M31600ybVvvfuov09WuCYlpqmRRodmFS3Jmo-DVUcfk43H-PntOl69Pi9l0mZZMFF0qS4PK5pnFolRQSGqlUpmVVBRihYDIDVe4MpabMq-UMpZZIQ4ek8vS2mxMboa_scd3j6HTW9f7JkbqGABAQSmI1N1Ald6F4NHq1sfS_lcD1YdV9GEVfVwl4rcDvqmbyuzr_-k_C1BhFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671101991</pqid></control><display><type>article</type><title>Knowledge Based on Rough Approximations and Ideals</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Hosny, Rodyna A. ; Al-shami, Tareq M. ; Azzam, A. A. ; Nawar, Ashraf S.</creator><contributor>Khan, Abdul Qadeer ; Abdul Qadeer Khan</contributor><creatorcontrib>Hosny, Rodyna A. ; Al-shami, Tareq M. ; Azzam, A. A. ; Nawar, Ashraf S. ; Khan, Abdul Qadeer ; Abdul Qadeer Khan</creatorcontrib><description>Topology is a beneficial structure to study the approximation operators in the rough set theory. In this work, we first introduce six new types of neighborhoods with respect to finite binary relations. We study their main properties and show under what conditions they are equivalent. Then we applied these types of neighborhoods to initiate some topological spaces that are utilized to define new types of rough set models. We compare these models and prove that the best accuracy measures are obtained in the cases of i and i. Also, we illustrate that our approaches are better than those defined under one arbitrary relation. To improve rough sets’ accuracy, we define some topological spaces using the idea of ideals. With the help of examples, we demonstrate that our methods are better than some methods studied in some published literature. Finally, we give a real-life application showing the merits of the approaches followed in this manuscript.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/3766286</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Approximation ; Coronaviruses ; Information science ; Rough set models ; Set theory ; Topology ; Universe</subject><ispartof>Mathematical problems in engineering, 2022-05, Vol.2022, p.1-12</ispartof><rights>Copyright © 2022 Rodyna A. Hosny et al.</rights><rights>Copyright © 2022 Rodyna A. Hosny et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-8cae9f43fe7c91780f8993f80676be1ee5a59ebaf5ac4d99af2f66ae9fa48cff3</citedby><cites>FETCH-LOGICAL-c267t-8cae9f43fe7c91780f8993f80676be1ee5a59ebaf5ac4d99af2f66ae9fa48cff3</cites><orcidid>0000-0002-1206-9326 ; 0000-0002-8074-1102 ; 0000-0001-9861-0074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><contributor>Khan, Abdul Qadeer</contributor><contributor>Abdul Qadeer Khan</contributor><creatorcontrib>Hosny, Rodyna A.</creatorcontrib><creatorcontrib>Al-shami, Tareq M.</creatorcontrib><creatorcontrib>Azzam, A. A.</creatorcontrib><creatorcontrib>Nawar, Ashraf S.</creatorcontrib><title>Knowledge Based on Rough Approximations and Ideals</title><title>Mathematical problems in engineering</title><description>Topology is a beneficial structure to study the approximation operators in the rough set theory. In this work, we first introduce six new types of neighborhoods with respect to finite binary relations. We study their main properties and show under what conditions they are equivalent. Then we applied these types of neighborhoods to initiate some topological spaces that are utilized to define new types of rough set models. We compare these models and prove that the best accuracy measures are obtained in the cases of i and i. Also, we illustrate that our approaches are better than those defined under one arbitrary relation. To improve rough sets’ accuracy, we define some topological spaces using the idea of ideals. With the help of examples, we demonstrate that our methods are better than some methods studied in some published literature. Finally, we give a real-life application showing the merits of the approaches followed in this manuscript.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Coronaviruses</subject><subject>Information science</subject><subject>Rough set models</subject><subject>Set theory</subject><subject>Topology</subject><subject>Universe</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kFFLwzAUhYMoOKdv_oCCj1qXmzZp8jjH1OFAEAXfQtbebB2zqUnL9N-b0T37dO7Dd-45HEKugd4DcD5hlLFJVgjBpDghI-AiSznkxWm8KctTYNnnObkIYUspAw5yRNhL4_Y7rNaYPJiAVeKa5M31600ybVvvfuov09WuCYlpqmRRodmFS3Jmo-DVUcfk43H-PntOl69Pi9l0mZZMFF0qS4PK5pnFolRQSGqlUpmVVBRihYDIDVe4MpabMq-UMpZZIQ4ek8vS2mxMboa_scd3j6HTW9f7JkbqGABAQSmI1N1Ald6F4NHq1sfS_lcD1YdV9GEVfVwl4rcDvqmbyuzr_-k_C1BhFQ</recordid><startdate>20220521</startdate><enddate>20220521</enddate><creator>Hosny, Rodyna A.</creator><creator>Al-shami, Tareq M.</creator><creator>Azzam, A. A.</creator><creator>Nawar, Ashraf S.</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1206-9326</orcidid><orcidid>https://orcid.org/0000-0002-8074-1102</orcidid><orcidid>https://orcid.org/0000-0001-9861-0074</orcidid></search><sort><creationdate>20220521</creationdate><title>Knowledge Based on Rough Approximations and Ideals</title><author>Hosny, Rodyna A. ; Al-shami, Tareq M. ; Azzam, A. A. ; Nawar, Ashraf S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-8cae9f43fe7c91780f8993f80676be1ee5a59ebaf5ac4d99af2f66ae9fa48cff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Coronaviruses</topic><topic>Information science</topic><topic>Rough set models</topic><topic>Set theory</topic><topic>Topology</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosny, Rodyna A.</creatorcontrib><creatorcontrib>Al-shami, Tareq M.</creatorcontrib><creatorcontrib>Azzam, A. A.</creatorcontrib><creatorcontrib>Nawar, Ashraf S.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosny, Rodyna A.</au><au>Al-shami, Tareq M.</au><au>Azzam, A. A.</au><au>Nawar, Ashraf S.</au><au>Khan, Abdul Qadeer</au><au>Abdul Qadeer Khan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge Based on Rough Approximations and Ideals</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-05-21</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Topology is a beneficial structure to study the approximation operators in the rough set theory. In this work, we first introduce six new types of neighborhoods with respect to finite binary relations. We study their main properties and show under what conditions they are equivalent. Then we applied these types of neighborhoods to initiate some topological spaces that are utilized to define new types of rough set models. We compare these models and prove that the best accuracy measures are obtained in the cases of i and i. Also, we illustrate that our approaches are better than those defined under one arbitrary relation. To improve rough sets’ accuracy, we define some topological spaces using the idea of ideals. With the help of examples, we demonstrate that our methods are better than some methods studied in some published literature. Finally, we give a real-life application showing the merits of the approaches followed in this manuscript.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/3766286</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1206-9326</orcidid><orcidid>https://orcid.org/0000-0002-8074-1102</orcidid><orcidid>https://orcid.org/0000-0001-9861-0074</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2022-05, Vol.2022, p.1-12 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2671101991 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Accuracy Approximation Coronaviruses Information science Rough set models Set theory Topology Universe |
title | Knowledge Based on Rough Approximations and Ideals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20Based%20on%20Rough%20Approximations%20and%20Ideals&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Hosny,%20Rodyna%20A.&rft.date=2022-05-21&rft.volume=2022&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/3766286&rft_dat=%3Cproquest_cross%3E2671101991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671101991&rft_id=info:pmid/&rfr_iscdi=true |