An Optimized Hybrid Fuzzy Weighted k-Nearest Neighbor with the Presence of Data Imbalance
We present an optimized hybrid fuzzy Weighted k-Nearest Neighbor classification model in the presence of imbalanced data. More attention is placed on data points in the boundary area between two classes. Finding greater results in the general classification of imbalanced data for both the minority a...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2022, Vol.13 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 13 |
creator | Bahanshal, Soha A. Baraka, Rebhi S. Kim, Bayong Verdhan, Vaibhav |
description | We present an optimized hybrid fuzzy Weighted k-Nearest Neighbor classification model in the presence of imbalanced data. More attention is placed on data points in the boundary area between two classes. Finding greater results in the general classification of imbalanced data for both the minority and the majority classes. The fuzzy weighted approach assigns large weights to small classes and small weights to large classes. It improves the classification performance for the minority class. Experimental results show a higher average performance than other relevant algorithms, e.g., the variants of kNN with SMOTE such as Weighted kNN alone and Fuzzy kNN alone. The results also signify that the proposed approach makes the overall solution more robust. At the same time, the overall classification performance on the complete dataset is also increased, thereby improving the overall solution. |
doi_str_mv | 10.14569/IJACSA.2022.0130476 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670742937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670742937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1896-47b5fbb28c84a5474ac4098dab4baa6cac5d1ce3f4e43d40a5fff5aec47ea213</originalsourceid><addsrcrecordid>eNotkE1PAjEQhhujiQT5Bx6aeF7s53b3uEERDAETSdRTM-22sggsdpcY-PWWj7nM5MmbmcmD0D0lfSpkmj-OX4vBe9FnhLE-oZwIlV6hDqMyTaRU5Po0Zwkl6vMW9ZpmSWLxnKUZ76CvYoNn27ZaVwdX4tHehKrEw93hsMcfrvpetJH-JFMHwTUtnh6RqQP-q9oFbhcOv0XuNtbh2uMnaAGP1wZWEMkduvGwalzv0rtoPnyeD0bJZPYyHhSTxNIsTxOhjPTGsMxmAqRQAqwgeVaCEQYgtWBlSa3jXjjBS0FAeu8lOCuUA0Z5Fz2c125D_buLT-plvQubeFGzVBElWM5VTIlzyoa6aYLzehuqNYS9pkSfNOqzRn3UqC8a-T_ISWYz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670742937</pqid></control><display><type>article</type><title>An Optimized Hybrid Fuzzy Weighted k-Nearest Neighbor with the Presence of Data Imbalance</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bahanshal, Soha A. ; Baraka, Rebhi S. ; Kim, Bayong ; Verdhan, Vaibhav</creator><creatorcontrib>Bahanshal, Soha A. ; Baraka, Rebhi S. ; Kim, Bayong ; Verdhan, Vaibhav</creatorcontrib><description>We present an optimized hybrid fuzzy Weighted k-Nearest Neighbor classification model in the presence of imbalanced data. More attention is placed on data points in the boundary area between two classes. Finding greater results in the general classification of imbalanced data for both the minority and the majority classes. The fuzzy weighted approach assigns large weights to small classes and small weights to large classes. It improves the classification performance for the minority class. Experimental results show a higher average performance than other relevant algorithms, e.g., the variants of kNN with SMOTE such as Weighted kNN alone and Fuzzy kNN alone. The results also signify that the proposed approach makes the overall solution more robust. At the same time, the overall classification performance on the complete dataset is also increased, thereby improving the overall solution.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2022.0130476</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Algorithms ; Classification ; Data points ; Robustness (mathematics)</subject><ispartof>International journal of advanced computer science & applications, 2022, Vol.13 (4)</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Bahanshal, Soha A.</creatorcontrib><creatorcontrib>Baraka, Rebhi S.</creatorcontrib><creatorcontrib>Kim, Bayong</creatorcontrib><creatorcontrib>Verdhan, Vaibhav</creatorcontrib><title>An Optimized Hybrid Fuzzy Weighted k-Nearest Neighbor with the Presence of Data Imbalance</title><title>International journal of advanced computer science & applications</title><description>We present an optimized hybrid fuzzy Weighted k-Nearest Neighbor classification model in the presence of imbalanced data. More attention is placed on data points in the boundary area between two classes. Finding greater results in the general classification of imbalanced data for both the minority and the majority classes. The fuzzy weighted approach assigns large weights to small classes and small weights to large classes. It improves the classification performance for the minority class. Experimental results show a higher average performance than other relevant algorithms, e.g., the variants of kNN with SMOTE such as Weighted kNN alone and Fuzzy kNN alone. The results also signify that the proposed approach makes the overall solution more robust. At the same time, the overall classification performance on the complete dataset is also increased, thereby improving the overall solution.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Data points</subject><subject>Robustness (mathematics)</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1PAjEQhhujiQT5Bx6aeF7s53b3uEERDAETSdRTM-22sggsdpcY-PWWj7nM5MmbmcmD0D0lfSpkmj-OX4vBe9FnhLE-oZwIlV6hDqMyTaRU5Po0Zwkl6vMW9ZpmSWLxnKUZ76CvYoNn27ZaVwdX4tHehKrEw93hsMcfrvpetJH-JFMHwTUtnh6RqQP-q9oFbhcOv0XuNtbh2uMnaAGP1wZWEMkduvGwalzv0rtoPnyeD0bJZPYyHhSTxNIsTxOhjPTGsMxmAqRQAqwgeVaCEQYgtWBlSa3jXjjBS0FAeu8lOCuUA0Z5Fz2c125D_buLT-plvQubeFGzVBElWM5VTIlzyoa6aYLzehuqNYS9pkSfNOqzRn3UqC8a-T_ISWYz</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Bahanshal, Soha A.</creator><creator>Baraka, Rebhi S.</creator><creator>Kim, Bayong</creator><creator>Verdhan, Vaibhav</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2022</creationdate><title>An Optimized Hybrid Fuzzy Weighted k-Nearest Neighbor with the Presence of Data Imbalance</title><author>Bahanshal, Soha A. ; Baraka, Rebhi S. ; Kim, Bayong ; Verdhan, Vaibhav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1896-47b5fbb28c84a5474ac4098dab4baa6cac5d1ce3f4e43d40a5fff5aec47ea213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Data points</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Bahanshal, Soha A.</creatorcontrib><creatorcontrib>Baraka, Rebhi S.</creatorcontrib><creatorcontrib>Kim, Bayong</creatorcontrib><creatorcontrib>Verdhan, Vaibhav</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahanshal, Soha A.</au><au>Baraka, Rebhi S.</au><au>Kim, Bayong</au><au>Verdhan, Vaibhav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimized Hybrid Fuzzy Weighted k-Nearest Neighbor with the Presence of Data Imbalance</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2022</date><risdate>2022</risdate><volume>13</volume><issue>4</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>We present an optimized hybrid fuzzy Weighted k-Nearest Neighbor classification model in the presence of imbalanced data. More attention is placed on data points in the boundary area between two classes. Finding greater results in the general classification of imbalanced data for both the minority and the majority classes. The fuzzy weighted approach assigns large weights to small classes and small weights to large classes. It improves the classification performance for the minority class. Experimental results show a higher average performance than other relevant algorithms, e.g., the variants of kNN with SMOTE such as Weighted kNN alone and Fuzzy kNN alone. The results also signify that the proposed approach makes the overall solution more robust. At the same time, the overall classification performance on the complete dataset is also increased, thereby improving the overall solution.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2022.0130476</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2022, Vol.13 (4) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2670742937 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Classification Data points Robustness (mathematics) |
title | An Optimized Hybrid Fuzzy Weighted k-Nearest Neighbor with the Presence of Data Imbalance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimized%20Hybrid%20Fuzzy%20Weighted%20k-Nearest%20Neighbor%20with%20the%20Presence%20of%20Data%20Imbalance&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Bahanshal,%20Soha%20A.&rft.date=2022&rft.volume=13&rft.issue=4&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2022.0130476&rft_dat=%3Cproquest_cross%3E2670742937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670742937&rft_id=info:pmid/&rfr_iscdi=true |