Macroscale superlubricity achieved via hydroxylated hexagonal boron nitride nanosheets with ionic liquid at steel/steel interface

Macroscale superlubricity is a prospective strategy in modern tribology to dramatically reduce friction and wear of mechanical equipment; however, it is mainly studied for point-to-surface contact or special friction pairs in experiments. In this study, a robust macroscale superlubricity for point-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Friction 2022-09, Vol.10 (9), p.1365-1381
Hauptverfasser: Zheng, Zhiwen, Liu, Xiaolong, Huang, Guowei, Chen, Haijie, Yu, Hongxiang, Feng, Dapeng, Qiao, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1381
container_issue 9
container_start_page 1365
container_title Friction
container_volume 10
creator Zheng, Zhiwen
Liu, Xiaolong
Huang, Guowei
Chen, Haijie
Yu, Hongxiang
Feng, Dapeng
Qiao, Dan
description Macroscale superlubricity is a prospective strategy in modern tribology to dramatically reduce friction and wear of mechanical equipment; however, it is mainly studied for point-to-surface contact or special friction pairs in experiments. In this study, a robust macroscale superlubricity for point-to-point contact on a steel interface was achieved for the first time by using hydroxylated modified boron nitride nanosheets with proton-type ionic liquids (ILs) as additives in ethylene glycol aqueous (EG aq ). The detailed superlubricity process and mechanism were revealed by theoretical calculations and segmented experiments. The results indicate that hydration originating from hydrated ions can significantly reduce the shear stress of EG aq , which plays an essential role in achieving superlubricity. Moreover, the IL induces a tribochemical reaction to form a friction-protective film. Hydroxylated boron nitride nanosheets (HO-BNNs) function as a polishing and self-repairing agent to disperse the contact stress between friction pairs. Superlubricity involves the change in lubrication state from boundary lubrication to mixed lubrication. This finding can remarkably extend the application of superlubricity for point-to-point contact on steel surfaces for engineering applications.
doi_str_mv 10.1007/s40544-021-0545-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670734398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670734398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-21583b9d37017622d918cb5c50bb3d1b734f937a9c743cf28159b1e0da4fa21f3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EElXpD-BmiXOoH0mdHFHFSyriAmfLdjaNUYhb2ynJkX9OSkCcuOyOVjMj7YfQJSXXlBCxDCnJ0jQhjCajyJL-BM0YYzwRgqSnv3pVkHO0CMFqwlPOMirIDH0-KeNdMKoBHLod-KbT3hobB6xMbeEAJT5Yheuh9K4fGhXHQw292rpWNVg771rc2uhtCbhVrQs1QAz4w8YaW9dagxu772yJVcQhAjTL74ltG8FXysAFOqtUE2Dxs-fo9e72Zf2QbJ7vH9c3m8TwgsaE0Sznuii5IFSsGCsLmhudmYxozUuqBU-rggtVGJFyU7GcZoWmQEqVVorRis_R1dS7827fQYjyzXV-fCJIthJkzPMiH110ch2pBA-V3Hn7rvwgKZFH2HKCLUfY8ghb9mOGTZkwetst-L_m_0Nfwa2FQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670734398</pqid></control><display><type>article</type><title>Macroscale superlubricity achieved via hydroxylated hexagonal boron nitride nanosheets with ionic liquid at steel/steel interface</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Zheng, Zhiwen ; Liu, Xiaolong ; Huang, Guowei ; Chen, Haijie ; Yu, Hongxiang ; Feng, Dapeng ; Qiao, Dan</creator><creatorcontrib>Zheng, Zhiwen ; Liu, Xiaolong ; Huang, Guowei ; Chen, Haijie ; Yu, Hongxiang ; Feng, Dapeng ; Qiao, Dan</creatorcontrib><description>Macroscale superlubricity is a prospective strategy in modern tribology to dramatically reduce friction and wear of mechanical equipment; however, it is mainly studied for point-to-surface contact or special friction pairs in experiments. In this study, a robust macroscale superlubricity for point-to-point contact on a steel interface was achieved for the first time by using hydroxylated modified boron nitride nanosheets with proton-type ionic liquids (ILs) as additives in ethylene glycol aqueous (EG aq ). The detailed superlubricity process and mechanism were revealed by theoretical calculations and segmented experiments. The results indicate that hydration originating from hydrated ions can significantly reduce the shear stress of EG aq , which plays an essential role in achieving superlubricity. Moreover, the IL induces a tribochemical reaction to form a friction-protective film. Hydroxylated boron nitride nanosheets (HO-BNNs) function as a polishing and self-repairing agent to disperse the contact stress between friction pairs. Superlubricity involves the change in lubrication state from boundary lubrication to mixed lubrication. This finding can remarkably extend the application of superlubricity for point-to-point contact on steel surfaces for engineering applications.</description><identifier>ISSN: 2223-7690</identifier><identifier>EISSN: 2223-7704</identifier><identifier>DOI: 10.1007/s40544-021-0545-x</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Additives ; Boron ; Boron nitride ; Boundary lubrication ; Contact stresses ; Corrosion and Coatings ; Engineering ; Ethylene glycol ; Friction ; Friction reduction ; Ionic liquids ; Ions ; Lubrication ; Mechanical Engineering ; Nanosheets ; Nanotechnology ; Physical Chemistry ; Point contact ; Research Article ; Shear stress ; Steel ; Surfaces and Interfaces ; Thin Films ; Tribology</subject><ispartof>Friction, 2022-09, Vol.10 (9), p.1365-1381</ispartof><rights>The author(s) 2021</rights><rights>The author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-21583b9d37017622d918cb5c50bb3d1b734f937a9c743cf28159b1e0da4fa21f3</citedby><cites>FETCH-LOGICAL-c391t-21583b9d37017622d918cb5c50bb3d1b734f937a9c743cf28159b1e0da4fa21f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40544-021-0545-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s40544-021-0545-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Zheng, Zhiwen</creatorcontrib><creatorcontrib>Liu, Xiaolong</creatorcontrib><creatorcontrib>Huang, Guowei</creatorcontrib><creatorcontrib>Chen, Haijie</creatorcontrib><creatorcontrib>Yu, Hongxiang</creatorcontrib><creatorcontrib>Feng, Dapeng</creatorcontrib><creatorcontrib>Qiao, Dan</creatorcontrib><title>Macroscale superlubricity achieved via hydroxylated hexagonal boron nitride nanosheets with ionic liquid at steel/steel interface</title><title>Friction</title><addtitle>Friction</addtitle><description>Macroscale superlubricity is a prospective strategy in modern tribology to dramatically reduce friction and wear of mechanical equipment; however, it is mainly studied for point-to-surface contact or special friction pairs in experiments. In this study, a robust macroscale superlubricity for point-to-point contact on a steel interface was achieved for the first time by using hydroxylated modified boron nitride nanosheets with proton-type ionic liquids (ILs) as additives in ethylene glycol aqueous (EG aq ). The detailed superlubricity process and mechanism were revealed by theoretical calculations and segmented experiments. The results indicate that hydration originating from hydrated ions can significantly reduce the shear stress of EG aq , which plays an essential role in achieving superlubricity. Moreover, the IL induces a tribochemical reaction to form a friction-protective film. Hydroxylated boron nitride nanosheets (HO-BNNs) function as a polishing and self-repairing agent to disperse the contact stress between friction pairs. Superlubricity involves the change in lubrication state from boundary lubrication to mixed lubrication. This finding can remarkably extend the application of superlubricity for point-to-point contact on steel surfaces for engineering applications.</description><subject>Additives</subject><subject>Boron</subject><subject>Boron nitride</subject><subject>Boundary lubrication</subject><subject>Contact stresses</subject><subject>Corrosion and Coatings</subject><subject>Engineering</subject><subject>Ethylene glycol</subject><subject>Friction</subject><subject>Friction reduction</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Lubrication</subject><subject>Mechanical Engineering</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Physical Chemistry</subject><subject>Point contact</subject><subject>Research Article</subject><subject>Shear stress</subject><subject>Steel</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><issn>2223-7690</issn><issn>2223-7704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtPwzAQhC0EElXpD-BmiXOoH0mdHFHFSyriAmfLdjaNUYhb2ynJkX9OSkCcuOyOVjMj7YfQJSXXlBCxDCnJ0jQhjCajyJL-BM0YYzwRgqSnv3pVkHO0CMFqwlPOMirIDH0-KeNdMKoBHLod-KbT3hobB6xMbeEAJT5Yheuh9K4fGhXHQw292rpWNVg771rc2uhtCbhVrQs1QAz4w8YaW9dagxu772yJVcQhAjTL74ltG8FXysAFOqtUE2Dxs-fo9e72Zf2QbJ7vH9c3m8TwgsaE0Sznuii5IFSsGCsLmhudmYxozUuqBU-rggtVGJFyU7GcZoWmQEqVVorRis_R1dS7827fQYjyzXV-fCJIthJkzPMiH110ch2pBA-V3Hn7rvwgKZFH2HKCLUfY8ghb9mOGTZkwetst-L_m_0Nfwa2FQQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Zheng, Zhiwen</creator><creator>Liu, Xiaolong</creator><creator>Huang, Guowei</creator><creator>Chen, Haijie</creator><creator>Yu, Hongxiang</creator><creator>Feng, Dapeng</creator><creator>Qiao, Dan</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20220901</creationdate><title>Macroscale superlubricity achieved via hydroxylated hexagonal boron nitride nanosheets with ionic liquid at steel/steel interface</title><author>Zheng, Zhiwen ; Liu, Xiaolong ; Huang, Guowei ; Chen, Haijie ; Yu, Hongxiang ; Feng, Dapeng ; Qiao, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-21583b9d37017622d918cb5c50bb3d1b734f937a9c743cf28159b1e0da4fa21f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Boron</topic><topic>Boron nitride</topic><topic>Boundary lubrication</topic><topic>Contact stresses</topic><topic>Corrosion and Coatings</topic><topic>Engineering</topic><topic>Ethylene glycol</topic><topic>Friction</topic><topic>Friction reduction</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Lubrication</topic><topic>Mechanical Engineering</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Physical Chemistry</topic><topic>Point contact</topic><topic>Research Article</topic><topic>Shear stress</topic><topic>Steel</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Zhiwen</creatorcontrib><creatorcontrib>Liu, Xiaolong</creatorcontrib><creatorcontrib>Huang, Guowei</creatorcontrib><creatorcontrib>Chen, Haijie</creatorcontrib><creatorcontrib>Yu, Hongxiang</creatorcontrib><creatorcontrib>Feng, Dapeng</creatorcontrib><creatorcontrib>Qiao, Dan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Friction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Zhiwen</au><au>Liu, Xiaolong</au><au>Huang, Guowei</au><au>Chen, Haijie</au><au>Yu, Hongxiang</au><au>Feng, Dapeng</au><au>Qiao, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroscale superlubricity achieved via hydroxylated hexagonal boron nitride nanosheets with ionic liquid at steel/steel interface</atitle><jtitle>Friction</jtitle><stitle>Friction</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>10</volume><issue>9</issue><spage>1365</spage><epage>1381</epage><pages>1365-1381</pages><issn>2223-7690</issn><eissn>2223-7704</eissn><abstract>Macroscale superlubricity is a prospective strategy in modern tribology to dramatically reduce friction and wear of mechanical equipment; however, it is mainly studied for point-to-surface contact or special friction pairs in experiments. In this study, a robust macroscale superlubricity for point-to-point contact on a steel interface was achieved for the first time by using hydroxylated modified boron nitride nanosheets with proton-type ionic liquids (ILs) as additives in ethylene glycol aqueous (EG aq ). The detailed superlubricity process and mechanism were revealed by theoretical calculations and segmented experiments. The results indicate that hydration originating from hydrated ions can significantly reduce the shear stress of EG aq , which plays an essential role in achieving superlubricity. Moreover, the IL induces a tribochemical reaction to form a friction-protective film. Hydroxylated boron nitride nanosheets (HO-BNNs) function as a polishing and self-repairing agent to disperse the contact stress between friction pairs. Superlubricity involves the change in lubrication state from boundary lubrication to mixed lubrication. This finding can remarkably extend the application of superlubricity for point-to-point contact on steel surfaces for engineering applications.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s40544-021-0545-x</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2223-7690
ispartof Friction, 2022-09, Vol.10 (9), p.1365-1381
issn 2223-7690
2223-7704
language eng
recordid cdi_proquest_journals_2670734398
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals
subjects Additives
Boron
Boron nitride
Boundary lubrication
Contact stresses
Corrosion and Coatings
Engineering
Ethylene glycol
Friction
Friction reduction
Ionic liquids
Ions
Lubrication
Mechanical Engineering
Nanosheets
Nanotechnology
Physical Chemistry
Point contact
Research Article
Shear stress
Steel
Surfaces and Interfaces
Thin Films
Tribology
title Macroscale superlubricity achieved via hydroxylated hexagonal boron nitride nanosheets with ionic liquid at steel/steel interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroscale%20superlubricity%20achieved%20via%20hydroxylated%20hexagonal%20boron%20nitride%20nanosheets%20with%20ionic%20liquid%20at%20steel/steel%20interface&rft.jtitle=Friction&rft.au=Zheng,%20Zhiwen&rft.date=2022-09-01&rft.volume=10&rft.issue=9&rft.spage=1365&rft.epage=1381&rft.pages=1365-1381&rft.issn=2223-7690&rft.eissn=2223-7704&rft_id=info:doi/10.1007/s40544-021-0545-x&rft_dat=%3Cproquest_cross%3E2670734398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670734398&rft_id=info:pmid/&rfr_iscdi=true