The Power of Subsampling in Submodular Maximization
We propose subsampling as a unified algorithmic technique for submodular maximization in centralized and online settings. The idea is simple: independently sample elements from the ground set and use simple combinatorial techniques (such as greedy or local search) on these sampled elements. We show...
Gespeichert in:
Veröffentlicht in: | Mathematics of operations research 2022-05, Vol.47 (2), p.1365-1393 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1393 |
---|---|
container_issue | 2 |
container_start_page | 1365 |
container_title | Mathematics of operations research |
container_volume | 47 |
creator | Harshaw, Christopher |
description | We propose subsampling as a unified algorithmic technique for submodular maximization in centralized and online settings. The idea is simple: independently sample elements from the ground set and use simple combinatorial techniques (such as greedy or local search) on these sampled elements. We show that this approach leads to optimal/state-of-the-art results despite being much simpler than existing methods. In the usual off-line setting, we present S
ample
G
reedy
, which obtains a
(
p
+
2
+
o
(
1
)
)
-approximation for maximizing a submodular function subject to a
p
-extendible system using
O
(
n
+
n
k
/
p
)
evaluation and feasibility queries, where
k
is the size of the largest feasible set. The approximation ratio improves to
p
+ 1 and
p
for monotone submodular and linear objectives, respectively. In the streaming setting, we present S
ample-
S
treaming
, which obtains a
(
4
p
+
2
−
o
(
1
)
)
-approximation for maximizing a submodular function subject to a
p
-matchoid using
O
(
k
) memory and
O
(
k
m
/
p
)
evaluation and feasibility queries per element, and
m
is the number of matroids defining the
p
-matchoid. The approximation ratio improves to 4
p
for monotone submodular objectives. We empirically demonstrate the effectiveness of our algorithms on video summarization, location summarization, and movie recommendation tasks. |
doi_str_mv | 10.1287/moor.2021.1172 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670668283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670668283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-7310a3fe2d45048dbebff1891ba79fe4949802a972bc836359f70c34b75935de3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI5uXRdct-bm3aUM6ggjCo7gLqRtohmmzZhM8fHrbang0tXlwHfOhQ-hc8AFECUv2xBiQTCBAkCSAzQDTkTOmYRDNMNUsFwK_nKMTlLaYAxcApshun6z2WP4sDELLnvqq2Ta3dZ3r5nvxtiGpt-amN2bT9_6b7P3oTtFR85skz37vXP0fHO9Xizz1cPt3eJqldeU4n0uKWBDnSUN45ipprKVc6BKqIwsnWUlKxUmppSkqhUVlJdO4pqySvKS8sbSObqYdncxvPc27fUm9LEbXmoiJBZCEUUHqpioOoaUonV6F31r4pcGrEcxehSjRzF6FDMUsqlg69D59IcrEJJhTvmA5BPiOxdim_6b_AGq7W6d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670668283</pqid></control><display><type>article</type><title>The Power of Subsampling in Submodular Maximization</title><source>INFORMS PubsOnLine</source><creator>Harshaw, Christopher</creator><creatorcontrib>Harshaw, Christopher</creatorcontrib><description>We propose subsampling as a unified algorithmic technique for submodular maximization in centralized and online settings. The idea is simple: independently sample elements from the ground set and use simple combinatorial techniques (such as greedy or local search) on these sampled elements. We show that this approach leads to optimal/state-of-the-art results despite being much simpler than existing methods. In the usual off-line setting, we present S
ample
G
reedy
, which obtains a
(
p
+
2
+
o
(
1
)
)
-approximation for maximizing a submodular function subject to a
p
-extendible system using
O
(
n
+
n
k
/
p
)
evaluation and feasibility queries, where
k
is the size of the largest feasible set. The approximation ratio improves to
p
+ 1 and
p
for monotone submodular and linear objectives, respectively. In the streaming setting, we present S
ample-
S
treaming
, which obtains a
(
4
p
+
2
−
o
(
1
)
)
-approximation for maximizing a submodular function subject to a
p
-matchoid using
O
(
k
) memory and
O
(
k
m
/
p
)
evaluation and feasibility queries per element, and
m
is the number of matroids defining the
p
-matchoid. The approximation ratio improves to 4
p
for monotone submodular objectives. We empirically demonstrate the effectiveness of our algorithms on video summarization, location summarization, and movie recommendation tasks.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.2021.1172</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; Approximation ; approximation algorithms ; Combinatorial analysis ; extendible systems ; Feasibility studies ; matchoids ; Mathematical analysis ; Maximization ; Operations research ; Optimization ; Optimization algorithms ; Primary: 68W25 ; Queries ; Sampling ; secondary: 68R05 ; streaming algorithms ; submodular maximization ; subsampling ; Video data</subject><ispartof>Mathematics of operations research, 2022-05, Vol.47 (2), p.1365-1393</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-7310a3fe2d45048dbebff1891ba79fe4949802a972bc836359f70c34b75935de3</citedby><cites>FETCH-LOGICAL-c330t-7310a3fe2d45048dbebff1891ba79fe4949802a972bc836359f70c34b75935de3</cites><orcidid>0000-0001-9350-8310 ; 0000-0002-1535-2979 ; 0000-0001-8427-054X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.2021.1172$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Harshaw, Christopher</creatorcontrib><title>The Power of Subsampling in Submodular Maximization</title><title>Mathematics of operations research</title><description>We propose subsampling as a unified algorithmic technique for submodular maximization in centralized and online settings. The idea is simple: independently sample elements from the ground set and use simple combinatorial techniques (such as greedy or local search) on these sampled elements. We show that this approach leads to optimal/state-of-the-art results despite being much simpler than existing methods. In the usual off-line setting, we present S
ample
G
reedy
, which obtains a
(
p
+
2
+
o
(
1
)
)
-approximation for maximizing a submodular function subject to a
p
-extendible system using
O
(
n
+
n
k
/
p
)
evaluation and feasibility queries, where
k
is the size of the largest feasible set. The approximation ratio improves to
p
+ 1 and
p
for monotone submodular and linear objectives, respectively. In the streaming setting, we present S
ample-
S
treaming
, which obtains a
(
4
p
+
2
−
o
(
1
)
)
-approximation for maximizing a submodular function subject to a
p
-matchoid using
O
(
k
) memory and
O
(
k
m
/
p
)
evaluation and feasibility queries per element, and
m
is the number of matroids defining the
p
-matchoid. The approximation ratio improves to 4
p
for monotone submodular objectives. We empirically demonstrate the effectiveness of our algorithms on video summarization, location summarization, and movie recommendation tasks.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>approximation algorithms</subject><subject>Combinatorial analysis</subject><subject>extendible systems</subject><subject>Feasibility studies</subject><subject>matchoids</subject><subject>Mathematical analysis</subject><subject>Maximization</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Primary: 68W25</subject><subject>Queries</subject><subject>Sampling</subject><subject>secondary: 68R05</subject><subject>streaming algorithms</subject><subject>submodular maximization</subject><subject>subsampling</subject><subject>Video data</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI5uXRdct-bm3aUM6ggjCo7gLqRtohmmzZhM8fHrbang0tXlwHfOhQ-hc8AFECUv2xBiQTCBAkCSAzQDTkTOmYRDNMNUsFwK_nKMTlLaYAxcApshun6z2WP4sDELLnvqq2Ta3dZ3r5nvxtiGpt-amN2bT9_6b7P3oTtFR85skz37vXP0fHO9Xizz1cPt3eJqldeU4n0uKWBDnSUN45ipprKVc6BKqIwsnWUlKxUmppSkqhUVlJdO4pqySvKS8sbSObqYdncxvPc27fUm9LEbXmoiJBZCEUUHqpioOoaUonV6F31r4pcGrEcxehSjRzF6FDMUsqlg69D59IcrEJJhTvmA5BPiOxdim_6b_AGq7W6d</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Harshaw, Christopher</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-9350-8310</orcidid><orcidid>https://orcid.org/0000-0002-1535-2979</orcidid><orcidid>https://orcid.org/0000-0001-8427-054X</orcidid></search><sort><creationdate>20220501</creationdate><title>The Power of Subsampling in Submodular Maximization</title><author>Harshaw, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-7310a3fe2d45048dbebff1891ba79fe4949802a972bc836359f70c34b75935de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>approximation algorithms</topic><topic>Combinatorial analysis</topic><topic>extendible systems</topic><topic>Feasibility studies</topic><topic>matchoids</topic><topic>Mathematical analysis</topic><topic>Maximization</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Primary: 68W25</topic><topic>Queries</topic><topic>Sampling</topic><topic>secondary: 68R05</topic><topic>streaming algorithms</topic><topic>submodular maximization</topic><topic>subsampling</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harshaw, Christopher</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harshaw, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Power of Subsampling in Submodular Maximization</atitle><jtitle>Mathematics of operations research</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>47</volume><issue>2</issue><spage>1365</spage><epage>1393</epage><pages>1365-1393</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><abstract>We propose subsampling as a unified algorithmic technique for submodular maximization in centralized and online settings. The idea is simple: independently sample elements from the ground set and use simple combinatorial techniques (such as greedy or local search) on these sampled elements. We show that this approach leads to optimal/state-of-the-art results despite being much simpler than existing methods. In the usual off-line setting, we present S
ample
G
reedy
, which obtains a
(
p
+
2
+
o
(
1
)
)
-approximation for maximizing a submodular function subject to a
p
-extendible system using
O
(
n
+
n
k
/
p
)
evaluation and feasibility queries, where
k
is the size of the largest feasible set. The approximation ratio improves to
p
+ 1 and
p
for monotone submodular and linear objectives, respectively. In the streaming setting, we present S
ample-
S
treaming
, which obtains a
(
4
p
+
2
−
o
(
1
)
)
-approximation for maximizing a submodular function subject to a
p
-matchoid using
O
(
k
) memory and
O
(
k
m
/
p
)
evaluation and feasibility queries per element, and
m
is the number of matroids defining the
p
-matchoid. The approximation ratio improves to 4
p
for monotone submodular objectives. We empirically demonstrate the effectiveness of our algorithms on video summarization, location summarization, and movie recommendation tasks.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.2021.1172</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-9350-8310</orcidid><orcidid>https://orcid.org/0000-0002-1535-2979</orcidid><orcidid>https://orcid.org/0000-0001-8427-054X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-765X |
ispartof | Mathematics of operations research, 2022-05, Vol.47 (2), p.1365-1393 |
issn | 0364-765X 1526-5471 |
language | eng |
recordid | cdi_proquest_journals_2670668283 |
source | INFORMS PubsOnLine |
subjects | Algorithms Approximation approximation algorithms Combinatorial analysis extendible systems Feasibility studies matchoids Mathematical analysis Maximization Operations research Optimization Optimization algorithms Primary: 68W25 Queries Sampling secondary: 68R05 streaming algorithms submodular maximization subsampling Video data |
title | The Power of Subsampling in Submodular Maximization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Power%20of%20Subsampling%20in%20Submodular%20Maximization&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Harshaw,%20Christopher&rft.date=2022-05-01&rft.volume=47&rft.issue=2&rft.spage=1365&rft.epage=1393&rft.pages=1365-1393&rft.issn=0364-765X&rft.eissn=1526-5471&rft_id=info:doi/10.1287/moor.2021.1172&rft_dat=%3Cproquest_cross%3E2670668283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670668283&rft_id=info:pmid/&rfr_iscdi=true |