The Pareto Frontier of Inefficiency in Mechanism Design
We study the trade-off between the price of anarchy (PoA) and the price of stability (PoS) in mechanism design in the prototypical problem of unrelated machine scheduling. We give bounds on the space of feasible mechanisms with respect to these metrics and observe that two fundamental mechanisms, na...
Gespeichert in:
Veröffentlicht in: | Mathematics of operations research 2022-05, Vol.47 (2), p.923-944 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 944 |
---|---|
container_issue | 2 |
container_start_page | 923 |
container_title | Mathematics of operations research |
container_volume | 47 |
creator | Filos-Ratsikas, Aris Giannakopoulos, Yiannis Lazos, Philip |
description | We study the trade-off between the price of anarchy (PoA) and the price of stability (PoS) in mechanism design in the prototypical problem of unrelated machine scheduling. We give bounds on the space of feasible mechanisms with respect to these metrics and observe that two fundamental mechanisms, namely the first price (FP) and the second price (SP), lie on the two opposite extrema of this boundary. Furthermore, for the natural class of anonymous task-independent mechanisms, we completely characterize the PoA/PoS Pareto frontier; we design a class of optimal mechanisms
S
P
α
that lie
exactly
on this frontier. In particular, these mechanisms range smoothly with respect to parameter
α
≥
1
across the frontier, between the first price (
S
P
1
) and second price (
S
P
∞
) mechanisms. En route to these results, we also provide a definitive answer to an important question related to the scheduling problem, namely whether nontruthful mechanisms can provide better makespan guarantees in the equilibrium compared with truthful ones. We answer this question in the negative by proving that the price of anarchy of
all
scheduling mechanisms is at least
n
, where
n
is the number of machines. |
doi_str_mv | 10.1287/moor.2021.1154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670668171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670668171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d9004c0af63d226f236d71401dfcefa838222faa132f8b01038839b8bb9e36d3</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqWwMltiTvCzE9sdUaFQqQiGDmyW49jUFbGLnQ79exIFiZHpLefeq3cQugVSApXivosxlZRQKAHq6gzNoKa8qCsB52hGGK8KweuPS3SV854QqAVUMyS2O4vfdbJ9xKsUQ-9twtHhdbDOeeNtMCfsA361ZqeDzx1-tNl_hmt04fRXtje_d462q6ft8qXYvD2vlw-bwjBa90W7IKQyRDvOWkq5o4y3wy6B1hnrtGSSUuq0BkadbAgQJiVbNLJpFnZA2RzdTbWHFL-PNvdqH48pDIuKckE4lyBgoMqJMinmnKxTh-Q7nU4KiBrdqNGNGt2o0c0QwFPAmjg89YdL4AKAV2RAignxwcXU5f8qfwC9VG9R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670668171</pqid></control><display><type>article</type><title>The Pareto Frontier of Inefficiency in Mechanism Design</title><source>INFORMS PubsOnLine</source><creator>Filos-Ratsikas, Aris ; Giannakopoulos, Yiannis ; Lazos, Philip</creator><creatorcontrib>Filos-Ratsikas, Aris ; Giannakopoulos, Yiannis ; Lazos, Philip</creatorcontrib><description>We study the trade-off between the price of anarchy (PoA) and the price of stability (PoS) in mechanism design in the prototypical problem of unrelated machine scheduling. We give bounds on the space of feasible mechanisms with respect to these metrics and observe that two fundamental mechanisms, namely the first price (FP) and the second price (SP), lie on the two opposite extrema of this boundary. Furthermore, for the natural class of anonymous task-independent mechanisms, we completely characterize the PoA/PoS Pareto frontier; we design a class of optimal mechanisms
S
P
α
that lie
exactly
on this frontier. In particular, these mechanisms range smoothly with respect to parameter
α
≥
1
across the frontier, between the first price (
S
P
1
) and second price (
S
P
∞
) mechanisms. En route to these results, we also provide a definitive answer to an important question related to the scheduling problem, namely whether nontruthful mechanisms can provide better makespan guarantees in the equilibrium compared with truthful ones. We answer this question in the negative by proving that the price of anarchy of
all
scheduling mechanisms is at least
n
, where
n
is the number of machines.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.2021.1154</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Design optimization ; makespan minimization ; mechanism design ; Operations research ; Pareto frontier ; Pareto optimum ; price of anarchy ; price of stability ; Prices ; Primary: 91B26, 91A68 ; Questions ; Scheduling ; scheduling unrelated machines ; secondary: 91A80, 90B35</subject><ispartof>Mathematics of operations research, 2022-05, Vol.47 (2), p.923-944</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences May 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-d9004c0af63d226f236d71401dfcefa838222faa132f8b01038839b8bb9e36d3</cites><orcidid>0000-0003-2382-1779 ; 0000-0001-9684-7609 ; 0000-0001-7868-8114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.2021.1154$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Filos-Ratsikas, Aris</creatorcontrib><creatorcontrib>Giannakopoulos, Yiannis</creatorcontrib><creatorcontrib>Lazos, Philip</creatorcontrib><title>The Pareto Frontier of Inefficiency in Mechanism Design</title><title>Mathematics of operations research</title><description>We study the trade-off between the price of anarchy (PoA) and the price of stability (PoS) in mechanism design in the prototypical problem of unrelated machine scheduling. We give bounds on the space of feasible mechanisms with respect to these metrics and observe that two fundamental mechanisms, namely the first price (FP) and the second price (SP), lie on the two opposite extrema of this boundary. Furthermore, for the natural class of anonymous task-independent mechanisms, we completely characterize the PoA/PoS Pareto frontier; we design a class of optimal mechanisms
S
P
α
that lie
exactly
on this frontier. In particular, these mechanisms range smoothly with respect to parameter
α
≥
1
across the frontier, between the first price (
S
P
1
) and second price (
S
P
∞
) mechanisms. En route to these results, we also provide a definitive answer to an important question related to the scheduling problem, namely whether nontruthful mechanisms can provide better makespan guarantees in the equilibrium compared with truthful ones. We answer this question in the negative by proving that the price of anarchy of
all
scheduling mechanisms is at least
n
, where
n
is the number of machines.</description><subject>Design optimization</subject><subject>makespan minimization</subject><subject>mechanism design</subject><subject>Operations research</subject><subject>Pareto frontier</subject><subject>Pareto optimum</subject><subject>price of anarchy</subject><subject>price of stability</subject><subject>Prices</subject><subject>Primary: 91B26, 91A68</subject><subject>Questions</subject><subject>Scheduling</subject><subject>scheduling unrelated machines</subject><subject>secondary: 91A80, 90B35</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAURS0EEqWwMltiTvCzE9sdUaFQqQiGDmyW49jUFbGLnQ79exIFiZHpLefeq3cQugVSApXivosxlZRQKAHq6gzNoKa8qCsB52hGGK8KweuPS3SV854QqAVUMyS2O4vfdbJ9xKsUQ-9twtHhdbDOeeNtMCfsA361ZqeDzx1-tNl_hmt04fRXtje_d462q6ft8qXYvD2vlw-bwjBa90W7IKQyRDvOWkq5o4y3wy6B1hnrtGSSUuq0BkadbAgQJiVbNLJpFnZA2RzdTbWHFL-PNvdqH48pDIuKckE4lyBgoMqJMinmnKxTh-Q7nU4KiBrdqNGNGt2o0c0QwFPAmjg89YdL4AKAV2RAignxwcXU5f8qfwC9VG9R</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Filos-Ratsikas, Aris</creator><creator>Giannakopoulos, Yiannis</creator><creator>Lazos, Philip</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-2382-1779</orcidid><orcidid>https://orcid.org/0000-0001-9684-7609</orcidid><orcidid>https://orcid.org/0000-0001-7868-8114</orcidid></search><sort><creationdate>20220501</creationdate><title>The Pareto Frontier of Inefficiency in Mechanism Design</title><author>Filos-Ratsikas, Aris ; Giannakopoulos, Yiannis ; Lazos, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d9004c0af63d226f236d71401dfcefa838222faa132f8b01038839b8bb9e36d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Design optimization</topic><topic>makespan minimization</topic><topic>mechanism design</topic><topic>Operations research</topic><topic>Pareto frontier</topic><topic>Pareto optimum</topic><topic>price of anarchy</topic><topic>price of stability</topic><topic>Prices</topic><topic>Primary: 91B26, 91A68</topic><topic>Questions</topic><topic>Scheduling</topic><topic>scheduling unrelated machines</topic><topic>secondary: 91A80, 90B35</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filos-Ratsikas, Aris</creatorcontrib><creatorcontrib>Giannakopoulos, Yiannis</creatorcontrib><creatorcontrib>Lazos, Philip</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filos-Ratsikas, Aris</au><au>Giannakopoulos, Yiannis</au><au>Lazos, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Pareto Frontier of Inefficiency in Mechanism Design</atitle><jtitle>Mathematics of operations research</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>47</volume><issue>2</issue><spage>923</spage><epage>944</epage><pages>923-944</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><abstract>We study the trade-off between the price of anarchy (PoA) and the price of stability (PoS) in mechanism design in the prototypical problem of unrelated machine scheduling. We give bounds on the space of feasible mechanisms with respect to these metrics and observe that two fundamental mechanisms, namely the first price (FP) and the second price (SP), lie on the two opposite extrema of this boundary. Furthermore, for the natural class of anonymous task-independent mechanisms, we completely characterize the PoA/PoS Pareto frontier; we design a class of optimal mechanisms
S
P
α
that lie
exactly
on this frontier. In particular, these mechanisms range smoothly with respect to parameter
α
≥
1
across the frontier, between the first price (
S
P
1
) and second price (
S
P
∞
) mechanisms. En route to these results, we also provide a definitive answer to an important question related to the scheduling problem, namely whether nontruthful mechanisms can provide better makespan guarantees in the equilibrium compared with truthful ones. We answer this question in the negative by proving that the price of anarchy of
all
scheduling mechanisms is at least
n
, where
n
is the number of machines.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.2021.1154</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2382-1779</orcidid><orcidid>https://orcid.org/0000-0001-9684-7609</orcidid><orcidid>https://orcid.org/0000-0001-7868-8114</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-765X |
ispartof | Mathematics of operations research, 2022-05, Vol.47 (2), p.923-944 |
issn | 0364-765X 1526-5471 |
language | eng |
recordid | cdi_proquest_journals_2670668171 |
source | INFORMS PubsOnLine |
subjects | Design optimization makespan minimization mechanism design Operations research Pareto frontier Pareto optimum price of anarchy price of stability Prices Primary: 91B26, 91A68 Questions Scheduling scheduling unrelated machines secondary: 91A80, 90B35 |
title | The Pareto Frontier of Inefficiency in Mechanism Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Pareto%20Frontier%20of%20Inefficiency%20in%20Mechanism%20Design&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Filos-Ratsikas,%20Aris&rft.date=2022-05-01&rft.volume=47&rft.issue=2&rft.spage=923&rft.epage=944&rft.pages=923-944&rft.issn=0364-765X&rft.eissn=1526-5471&rft_id=info:doi/10.1287/moor.2021.1154&rft_dat=%3Cproquest_cross%3E2670668171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670668171&rft_id=info:pmid/&rfr_iscdi=true |