The Pareto Frontier of Inefficiency in Mechanism Design

We study the trade-off between the price of anarchy (PoA) and the price of stability (PoS) in mechanism design in the prototypical problem of unrelated machine scheduling. We give bounds on the space of feasible mechanisms with respect to these metrics and observe that two fundamental mechanisms, na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2022-05, Vol.47 (2), p.923-944
Hauptverfasser: Filos-Ratsikas, Aris, Giannakopoulos, Yiannis, Lazos, Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 944
container_issue 2
container_start_page 923
container_title Mathematics of operations research
container_volume 47
creator Filos-Ratsikas, Aris
Giannakopoulos, Yiannis
Lazos, Philip
description We study the trade-off between the price of anarchy (PoA) and the price of stability (PoS) in mechanism design in the prototypical problem of unrelated machine scheduling. We give bounds on the space of feasible mechanisms with respect to these metrics and observe that two fundamental mechanisms, namely the first price (FP) and the second price (SP), lie on the two opposite extrema of this boundary. Furthermore, for the natural class of anonymous task-independent mechanisms, we completely characterize the PoA/PoS Pareto frontier; we design a class of optimal mechanisms S P α that lie exactly on this frontier. In particular, these mechanisms range smoothly with respect to parameter α ≥ 1 across the frontier, between the first price ( S P 1 ) and second price ( S P ∞ ) mechanisms. En route to these results, we also provide a definitive answer to an important question related to the scheduling problem, namely whether nontruthful mechanisms can provide better makespan guarantees in the equilibrium compared with truthful ones. We answer this question in the negative by proving that the price of anarchy of all scheduling mechanisms is at least n , where n is the number of machines.
doi_str_mv 10.1287/moor.2021.1154
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670668171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670668171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d9004c0af63d226f236d71401dfcefa838222faa132f8b01038839b8bb9e36d3</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqWwMltiTvCzE9sdUaFQqQiGDmyW49jUFbGLnQ79exIFiZHpLefeq3cQugVSApXivosxlZRQKAHq6gzNoKa8qCsB52hGGK8KweuPS3SV854QqAVUMyS2O4vfdbJ9xKsUQ-9twtHhdbDOeeNtMCfsA361ZqeDzx1-tNl_hmt04fRXtje_d462q6ft8qXYvD2vlw-bwjBa90W7IKQyRDvOWkq5o4y3wy6B1hnrtGSSUuq0BkadbAgQJiVbNLJpFnZA2RzdTbWHFL-PNvdqH48pDIuKckE4lyBgoMqJMinmnKxTh-Q7nU4KiBrdqNGNGt2o0c0QwFPAmjg89YdL4AKAV2RAignxwcXU5f8qfwC9VG9R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670668171</pqid></control><display><type>article</type><title>The Pareto Frontier of Inefficiency in Mechanism Design</title><source>INFORMS PubsOnLine</source><creator>Filos-Ratsikas, Aris ; Giannakopoulos, Yiannis ; Lazos, Philip</creator><creatorcontrib>Filos-Ratsikas, Aris ; Giannakopoulos, Yiannis ; Lazos, Philip</creatorcontrib><description>We study the trade-off between the price of anarchy (PoA) and the price of stability (PoS) in mechanism design in the prototypical problem of unrelated machine scheduling. We give bounds on the space of feasible mechanisms with respect to these metrics and observe that two fundamental mechanisms, namely the first price (FP) and the second price (SP), lie on the two opposite extrema of this boundary. Furthermore, for the natural class of anonymous task-independent mechanisms, we completely characterize the PoA/PoS Pareto frontier; we design a class of optimal mechanisms S P α that lie exactly on this frontier. In particular, these mechanisms range smoothly with respect to parameter α ≥ 1 across the frontier, between the first price ( S P 1 ) and second price ( S P ∞ ) mechanisms. En route to these results, we also provide a definitive answer to an important question related to the scheduling problem, namely whether nontruthful mechanisms can provide better makespan guarantees in the equilibrium compared with truthful ones. We answer this question in the negative by proving that the price of anarchy of all scheduling mechanisms is at least n , where n is the number of machines.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.2021.1154</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Design optimization ; makespan minimization ; mechanism design ; Operations research ; Pareto frontier ; Pareto optimum ; price of anarchy ; price of stability ; Prices ; Primary: 91B26, 91A68 ; Questions ; Scheduling ; scheduling unrelated machines ; secondary: 91A80, 90B35</subject><ispartof>Mathematics of operations research, 2022-05, Vol.47 (2), p.923-944</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences May 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-d9004c0af63d226f236d71401dfcefa838222faa132f8b01038839b8bb9e36d3</cites><orcidid>0000-0003-2382-1779 ; 0000-0001-9684-7609 ; 0000-0001-7868-8114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.2021.1154$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Filos-Ratsikas, Aris</creatorcontrib><creatorcontrib>Giannakopoulos, Yiannis</creatorcontrib><creatorcontrib>Lazos, Philip</creatorcontrib><title>The Pareto Frontier of Inefficiency in Mechanism Design</title><title>Mathematics of operations research</title><description>We study the trade-off between the price of anarchy (PoA) and the price of stability (PoS) in mechanism design in the prototypical problem of unrelated machine scheduling. We give bounds on the space of feasible mechanisms with respect to these metrics and observe that two fundamental mechanisms, namely the first price (FP) and the second price (SP), lie on the two opposite extrema of this boundary. Furthermore, for the natural class of anonymous task-independent mechanisms, we completely characterize the PoA/PoS Pareto frontier; we design a class of optimal mechanisms S P α that lie exactly on this frontier. In particular, these mechanisms range smoothly with respect to parameter α ≥ 1 across the frontier, between the first price ( S P 1 ) and second price ( S P ∞ ) mechanisms. En route to these results, we also provide a definitive answer to an important question related to the scheduling problem, namely whether nontruthful mechanisms can provide better makespan guarantees in the equilibrium compared with truthful ones. We answer this question in the negative by proving that the price of anarchy of all scheduling mechanisms is at least n , where n is the number of machines.</description><subject>Design optimization</subject><subject>makespan minimization</subject><subject>mechanism design</subject><subject>Operations research</subject><subject>Pareto frontier</subject><subject>Pareto optimum</subject><subject>price of anarchy</subject><subject>price of stability</subject><subject>Prices</subject><subject>Primary: 91B26, 91A68</subject><subject>Questions</subject><subject>Scheduling</subject><subject>scheduling unrelated machines</subject><subject>secondary: 91A80, 90B35</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAURS0EEqWwMltiTvCzE9sdUaFQqQiGDmyW49jUFbGLnQ79exIFiZHpLefeq3cQugVSApXivosxlZRQKAHq6gzNoKa8qCsB52hGGK8KweuPS3SV854QqAVUMyS2O4vfdbJ9xKsUQ-9twtHhdbDOeeNtMCfsA361ZqeDzx1-tNl_hmt04fRXtje_d462q6ft8qXYvD2vlw-bwjBa90W7IKQyRDvOWkq5o4y3wy6B1hnrtGSSUuq0BkadbAgQJiVbNLJpFnZA2RzdTbWHFL-PNvdqH48pDIuKckE4lyBgoMqJMinmnKxTh-Q7nU4KiBrdqNGNGt2o0c0QwFPAmjg89YdL4AKAV2RAignxwcXU5f8qfwC9VG9R</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Filos-Ratsikas, Aris</creator><creator>Giannakopoulos, Yiannis</creator><creator>Lazos, Philip</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-2382-1779</orcidid><orcidid>https://orcid.org/0000-0001-9684-7609</orcidid><orcidid>https://orcid.org/0000-0001-7868-8114</orcidid></search><sort><creationdate>20220501</creationdate><title>The Pareto Frontier of Inefficiency in Mechanism Design</title><author>Filos-Ratsikas, Aris ; Giannakopoulos, Yiannis ; Lazos, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d9004c0af63d226f236d71401dfcefa838222faa132f8b01038839b8bb9e36d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Design optimization</topic><topic>makespan minimization</topic><topic>mechanism design</topic><topic>Operations research</topic><topic>Pareto frontier</topic><topic>Pareto optimum</topic><topic>price of anarchy</topic><topic>price of stability</topic><topic>Prices</topic><topic>Primary: 91B26, 91A68</topic><topic>Questions</topic><topic>Scheduling</topic><topic>scheduling unrelated machines</topic><topic>secondary: 91A80, 90B35</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filos-Ratsikas, Aris</creatorcontrib><creatorcontrib>Giannakopoulos, Yiannis</creatorcontrib><creatorcontrib>Lazos, Philip</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filos-Ratsikas, Aris</au><au>Giannakopoulos, Yiannis</au><au>Lazos, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Pareto Frontier of Inefficiency in Mechanism Design</atitle><jtitle>Mathematics of operations research</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>47</volume><issue>2</issue><spage>923</spage><epage>944</epage><pages>923-944</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><abstract>We study the trade-off between the price of anarchy (PoA) and the price of stability (PoS) in mechanism design in the prototypical problem of unrelated machine scheduling. We give bounds on the space of feasible mechanisms with respect to these metrics and observe that two fundamental mechanisms, namely the first price (FP) and the second price (SP), lie on the two opposite extrema of this boundary. Furthermore, for the natural class of anonymous task-independent mechanisms, we completely characterize the PoA/PoS Pareto frontier; we design a class of optimal mechanisms S P α that lie exactly on this frontier. In particular, these mechanisms range smoothly with respect to parameter α ≥ 1 across the frontier, between the first price ( S P 1 ) and second price ( S P ∞ ) mechanisms. En route to these results, we also provide a definitive answer to an important question related to the scheduling problem, namely whether nontruthful mechanisms can provide better makespan guarantees in the equilibrium compared with truthful ones. We answer this question in the negative by proving that the price of anarchy of all scheduling mechanisms is at least n , where n is the number of machines.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.2021.1154</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2382-1779</orcidid><orcidid>https://orcid.org/0000-0001-9684-7609</orcidid><orcidid>https://orcid.org/0000-0001-7868-8114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-765X
ispartof Mathematics of operations research, 2022-05, Vol.47 (2), p.923-944
issn 0364-765X
1526-5471
language eng
recordid cdi_proquest_journals_2670668171
source INFORMS PubsOnLine
subjects Design optimization
makespan minimization
mechanism design
Operations research
Pareto frontier
Pareto optimum
price of anarchy
price of stability
Prices
Primary: 91B26, 91A68
Questions
Scheduling
scheduling unrelated machines
secondary: 91A80, 90B35
title The Pareto Frontier of Inefficiency in Mechanism Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Pareto%20Frontier%20of%20Inefficiency%20in%20Mechanism%20Design&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Filos-Ratsikas,%20Aris&rft.date=2022-05-01&rft.volume=47&rft.issue=2&rft.spage=923&rft.epage=944&rft.pages=923-944&rft.issn=0364-765X&rft.eissn=1526-5471&rft_id=info:doi/10.1287/moor.2021.1154&rft_dat=%3Cproquest_cross%3E2670668171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670668171&rft_id=info:pmid/&rfr_iscdi=true