The solution of the anomalous diffusion equation by a finite element method formulation based on the Caputo derivative

A finite element method formulation is developed for the solution of the anomalous diffusion equation. This equation belongs to the branch of mathematics called fractional calculus: it is governed by a partial differential equation in which a fractional time derivative, whose order ranges in the int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Brazilian Society of Mechanical Sciences and Engineering 2022-06, Vol.44 (6), Article 250
Hauptverfasser: Corrêa, R. M., Carrer, J. A. M., Solheid, B. S., Trevelyan, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of the Brazilian Society of Mechanical Sciences and Engineering
container_volume 44
creator Corrêa, R. M.
Carrer, J. A. M.
Solheid, B. S.
Trevelyan, J.
description A finite element method formulation is developed for the solution of the anomalous diffusion equation. This equation belongs to the branch of mathematics called fractional calculus: it is governed by a partial differential equation in which a fractional time derivative, whose order ranges in the interval (0,1), replaces the first-order time derivative of the classical diffusion equation. In this work, the Caputo integro-differential operator is employed to represent the fractional time derivative. After assuming a linear time variation for the variable of interest, say u , in the intervals in which the overall time is discretized, the integral in the Caputo operator is computed analytically. To demonstrate the usefulness of the proposed formulation, four examples are analysed, showing a good agreement between the FEM results the analytical solutions, even for small orders of the time derivative.
doi_str_mv 10.1007/s40430-022-03544-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670626363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670626363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-cee77dd378c79a922ded80acc0ecfe9a08de2b08aa358a66a217e5ba42dd671f3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczSb7CbZoxT_QcFLPYd0M7Fbdjdtki3025u6BW-eZob5vffgIXRf0MeCUvkUS1pySihjhPKqLEl1gWaFooJwUReXeRdSkUpJdY1uYtxSylklqhk6rDaAo-_G1PoBe4dTvs3ge9P5MWLbOjfG0wv2o_ll1kdssGuHNgGGDnoYEu4hbbzFzod-7M6YiWBxXk6GC7Mbk8cWQnvI7wPcoitnugh35zlHX68vq8U7WX6-fSyel6ThgifSAEhpLZeqkbWpGbNgFTVNQ6FxUBuqLLA1VcbwShkhDCskVGtTMmuFLByfo4fJdxf8foSY9NaPYciRmglJBRM5J1NsoprgYwzg9C60vQlHXVB96ldP_ercr_7tV1dZxCdRzPDwDeHP-h_VD6togME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670626363</pqid></control><display><type>article</type><title>The solution of the anomalous diffusion equation by a finite element method formulation based on the Caputo derivative</title><source>SpringerLink Journals</source><creator>Corrêa, R. M. ; Carrer, J. A. M. ; Solheid, B. S. ; Trevelyan, J.</creator><creatorcontrib>Corrêa, R. M. ; Carrer, J. A. M. ; Solheid, B. S. ; Trevelyan, J.</creatorcontrib><description>A finite element method formulation is developed for the solution of the anomalous diffusion equation. This equation belongs to the branch of mathematics called fractional calculus: it is governed by a partial differential equation in which a fractional time derivative, whose order ranges in the interval (0,1), replaces the first-order time derivative of the classical diffusion equation. In this work, the Caputo integro-differential operator is employed to represent the fractional time derivative. After assuming a linear time variation for the variable of interest, say u , in the intervals in which the overall time is discretized, the integral in the Caputo operator is computed analytically. To demonstrate the usefulness of the proposed formulation, four examples are analysed, showing a good agreement between the FEM results the analytical solutions, even for small orders of the time derivative.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-022-03544-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Derivatives ; Differential calculus ; Diffusion ; Engineering ; Exact solutions ; Finite element analysis ; Finite element method ; Fractional calculus ; Mechanical Engineering ; Operators (mathematics) ; Partial differential equations ; Technical Paper</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022-06, Vol.44 (6), Article 250</ispartof><rights>The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2022</rights><rights>The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2022.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-cee77dd378c79a922ded80acc0ecfe9a08de2b08aa358a66a217e5ba42dd671f3</citedby><cites>FETCH-LOGICAL-c363t-cee77dd378c79a922ded80acc0ecfe9a08de2b08aa358a66a217e5ba42dd671f3</cites><orcidid>0000-0001-6891-2880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-022-03544-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-022-03544-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Corrêa, R. M.</creatorcontrib><creatorcontrib>Carrer, J. A. M.</creatorcontrib><creatorcontrib>Solheid, B. S.</creatorcontrib><creatorcontrib>Trevelyan, J.</creatorcontrib><title>The solution of the anomalous diffusion equation by a finite element method formulation based on the Caputo derivative</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>A finite element method formulation is developed for the solution of the anomalous diffusion equation. This equation belongs to the branch of mathematics called fractional calculus: it is governed by a partial differential equation in which a fractional time derivative, whose order ranges in the interval (0,1), replaces the first-order time derivative of the classical diffusion equation. In this work, the Caputo integro-differential operator is employed to represent the fractional time derivative. After assuming a linear time variation for the variable of interest, say u , in the intervals in which the overall time is discretized, the integral in the Caputo operator is computed analytically. To demonstrate the usefulness of the proposed formulation, four examples are analysed, showing a good agreement between the FEM results the analytical solutions, even for small orders of the time derivative.</description><subject>Derivatives</subject><subject>Differential calculus</subject><subject>Diffusion</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fractional calculus</subject><subject>Mechanical Engineering</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><subject>Technical Paper</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczSb7CbZoxT_QcFLPYd0M7Fbdjdtki3025u6BW-eZob5vffgIXRf0MeCUvkUS1pySihjhPKqLEl1gWaFooJwUReXeRdSkUpJdY1uYtxSylklqhk6rDaAo-_G1PoBe4dTvs3ge9P5MWLbOjfG0wv2o_ll1kdssGuHNgGGDnoYEu4hbbzFzod-7M6YiWBxXk6GC7Mbk8cWQnvI7wPcoitnugh35zlHX68vq8U7WX6-fSyel6ThgifSAEhpLZeqkbWpGbNgFTVNQ6FxUBuqLLA1VcbwShkhDCskVGtTMmuFLByfo4fJdxf8foSY9NaPYciRmglJBRM5J1NsoprgYwzg9C60vQlHXVB96ldP_ercr_7tV1dZxCdRzPDwDeHP-h_VD6togME</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Corrêa, R. M.</creator><creator>Carrer, J. A. M.</creator><creator>Solheid, B. S.</creator><creator>Trevelyan, J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6891-2880</orcidid></search><sort><creationdate>20220601</creationdate><title>The solution of the anomalous diffusion equation by a finite element method formulation based on the Caputo derivative</title><author>Corrêa, R. M. ; Carrer, J. A. M. ; Solheid, B. S. ; Trevelyan, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-cee77dd378c79a922ded80acc0ecfe9a08de2b08aa358a66a217e5ba42dd671f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Derivatives</topic><topic>Differential calculus</topic><topic>Diffusion</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fractional calculus</topic><topic>Mechanical Engineering</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><topic>Technical Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>Corrêa, R. M.</creatorcontrib><creatorcontrib>Carrer, J. A. M.</creatorcontrib><creatorcontrib>Solheid, B. S.</creatorcontrib><creatorcontrib>Trevelyan, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corrêa, R. M.</au><au>Carrer, J. A. M.</au><au>Solheid, B. S.</au><au>Trevelyan, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The solution of the anomalous diffusion equation by a finite element method formulation based on the Caputo derivative</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>44</volume><issue>6</issue><artnum>250</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>A finite element method formulation is developed for the solution of the anomalous diffusion equation. This equation belongs to the branch of mathematics called fractional calculus: it is governed by a partial differential equation in which a fractional time derivative, whose order ranges in the interval (0,1), replaces the first-order time derivative of the classical diffusion equation. In this work, the Caputo integro-differential operator is employed to represent the fractional time derivative. After assuming a linear time variation for the variable of interest, say u , in the intervals in which the overall time is discretized, the integral in the Caputo operator is computed analytically. To demonstrate the usefulness of the proposed formulation, four examples are analysed, showing a good agreement between the FEM results the analytical solutions, even for small orders of the time derivative.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-022-03544-5</doi><orcidid>https://orcid.org/0000-0001-6891-2880</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1678-5878
ispartof Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022-06, Vol.44 (6), Article 250
issn 1678-5878
1806-3691
language eng
recordid cdi_proquest_journals_2670626363
source SpringerLink Journals
subjects Derivatives
Differential calculus
Diffusion
Engineering
Exact solutions
Finite element analysis
Finite element method
Fractional calculus
Mechanical Engineering
Operators (mathematics)
Partial differential equations
Technical Paper
title The solution of the anomalous diffusion equation by a finite element method formulation based on the Caputo derivative
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20solution%20of%20the%20anomalous%20diffusion%20equation%20by%20a%20finite%20element%20method%20formulation%20based%20on%20the%20Caputo%20derivative&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=Corr%C3%AAa,%20R.%20M.&rft.date=2022-06-01&rft.volume=44&rft.issue=6&rft.artnum=250&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-022-03544-5&rft_dat=%3Cproquest_cross%3E2670626363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670626363&rft_id=info:pmid/&rfr_iscdi=true