A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings
Recent studies have witnessed remarkable merits of metaheuristic algorithms in optimization problems. Due to the significance of the early analysis of the thermal load in energy-efficient buildings, this work introduces and compares four novel optimizer techniques—the firefly algorithm (FA), optics-...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-05, Vol.14 (10), p.5924 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 5924 |
container_title | Sustainability |
container_volume | 14 |
creator | Almutairi, Khalid Algarni, Salem Alqahtani, Talal Moayedi, Hossein Mosavi, Amir |
description | Recent studies have witnessed remarkable merits of metaheuristic algorithms in optimization problems. Due to the significance of the early analysis of the thermal load in energy-efficient buildings, this work introduces and compares four novel optimizer techniques—the firefly algorithm (FA), optics-inspired optimization (OIO), shuffled complex evolution (SCE), and teaching–learning-based optimization (TLBO)—for an accurate prediction of the heating load (HL). The models are applied to a multilayer perceptron (MLP) neural network to surmount its computational shortcomings. The models are fed by a literature-based dataset obtained for residential buildings. The results revealed that all models used are capable of properly analyzing and predicting the HL pattern. A comparison between them, however, showed that the TLBO-MLP with the coefficients of determination 0.9610 vs. 0.9438, 0.9373, and 0.9556 (respectively, for FA-MLP, OIO-MLP, and SCE-MLP) and the root mean square error of 2.1103 vs. 2.5456, 2.7099, and 2.2774 presents the most reliable approximation of the HL. It also surpassed several methods used in previous studies. Thus, the developed TLBO-MLP can be a beneficial model for subsequent practical applications. |
doi_str_mv | 10.3390/su14105924 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2670473349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670473349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a5e24890d523c811fce25f26ff4439f3f92aa6fa4c3c0bc7979e75ae7e71ec593</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqb34CwLehNV8bppjW9QKiy1lPYeYnUjKuluT3YP_3tQKOjC8N8ybefAQuqbkjnNN7tNIBSVSM3GGJowoWuSJnP_jl2iW0p7k4pxqWk7QboHrarkp6rGDBr_AGG2Lt7F3kFIfsc-9jdAEN4TuHa_B_mDV2waHDu8ghQa6IeSj5RjaJi_TFbrwtk0w-8Upen18qFfroto8Pa8WVeGYlkNhJTAx16SRjLs5pd4Bk56V3gvBtedeM2tLb4Xjjrw5pZUGJS0oUBSc1HyKbk5_D7H_HCENZt-PscuWhpWKCMW5OKpuTyoX-5QieHOI4cPGL0OJOcZm_mLj35BsXmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670473349</pqid></control><display><type>article</type><title>A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Almutairi, Khalid ; Algarni, Salem ; Alqahtani, Talal ; Moayedi, Hossein ; Mosavi, Amir</creator><creatorcontrib>Almutairi, Khalid ; Algarni, Salem ; Alqahtani, Talal ; Moayedi, Hossein ; Mosavi, Amir</creatorcontrib><description>Recent studies have witnessed remarkable merits of metaheuristic algorithms in optimization problems. Due to the significance of the early analysis of the thermal load in energy-efficient buildings, this work introduces and compares four novel optimizer techniques—the firefly algorithm (FA), optics-inspired optimization (OIO), shuffled complex evolution (SCE), and teaching–learning-based optimization (TLBO)—for an accurate prediction of the heating load (HL). The models are applied to a multilayer perceptron (MLP) neural network to surmount its computational shortcomings. The models are fed by a literature-based dataset obtained for residential buildings. The results revealed that all models used are capable of properly analyzing and predicting the HL pattern. A comparison between them, however, showed that the TLBO-MLP with the coefficients of determination 0.9610 vs. 0.9438, 0.9373, and 0.9556 (respectively, for FA-MLP, OIO-MLP, and SCE-MLP) and the root mean square error of 2.1103 vs. 2.5456, 2.7099, and 2.2774 presents the most reliable approximation of the HL. It also surpassed several methods used in previous studies. Thus, the developed TLBO-MLP can be a beneficial model for subsequent practical applications.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14105924</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Buildings ; Computer applications ; Data science ; Efficiency ; Energy efficiency ; Energy modeling ; Heating load ; HVAC ; Load ; Machine learning ; Methods ; Microprocessors ; Multilayer perceptrons ; Neural networks ; Optimization ; Optimization techniques ; Residential areas ; Residential buildings ; Sensitivity analysis ; Sustainability ; Thermal analysis</subject><ispartof>Sustainability, 2022-05, Vol.14 (10), p.5924</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a5e24890d523c811fce25f26ff4439f3f92aa6fa4c3c0bc7979e75ae7e71ec593</citedby><cites>FETCH-LOGICAL-c295t-a5e24890d523c811fce25f26ff4439f3f92aa6fa4c3c0bc7979e75ae7e71ec593</cites><orcidid>0000-0002-0745-6487 ; 0000-0003-4842-0613 ; 0000-0003-1164-7777 ; 0000-0002-8722-2882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Almutairi, Khalid</creatorcontrib><creatorcontrib>Algarni, Salem</creatorcontrib><creatorcontrib>Alqahtani, Talal</creatorcontrib><creatorcontrib>Moayedi, Hossein</creatorcontrib><creatorcontrib>Mosavi, Amir</creatorcontrib><title>A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings</title><title>Sustainability</title><description>Recent studies have witnessed remarkable merits of metaheuristic algorithms in optimization problems. Due to the significance of the early analysis of the thermal load in energy-efficient buildings, this work introduces and compares four novel optimizer techniques—the firefly algorithm (FA), optics-inspired optimization (OIO), shuffled complex evolution (SCE), and teaching–learning-based optimization (TLBO)—for an accurate prediction of the heating load (HL). The models are applied to a multilayer perceptron (MLP) neural network to surmount its computational shortcomings. The models are fed by a literature-based dataset obtained for residential buildings. The results revealed that all models used are capable of properly analyzing and predicting the HL pattern. A comparison between them, however, showed that the TLBO-MLP with the coefficients of determination 0.9610 vs. 0.9438, 0.9373, and 0.9556 (respectively, for FA-MLP, OIO-MLP, and SCE-MLP) and the root mean square error of 2.1103 vs. 2.5456, 2.7099, and 2.2774 presents the most reliable approximation of the HL. It also surpassed several methods used in previous studies. Thus, the developed TLBO-MLP can be a beneficial model for subsequent practical applications.</description><subject>Algorithms</subject><subject>Buildings</subject><subject>Computer applications</subject><subject>Data science</subject><subject>Efficiency</subject><subject>Energy efficiency</subject><subject>Energy modeling</subject><subject>Heating load</subject><subject>HVAC</subject><subject>Load</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Microprocessors</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Residential areas</subject><subject>Residential buildings</subject><subject>Sensitivity analysis</subject><subject>Sustainability</subject><subject>Thermal analysis</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUE1LAzEQDaJgqb34CwLehNV8bppjW9QKiy1lPYeYnUjKuluT3YP_3tQKOjC8N8ybefAQuqbkjnNN7tNIBSVSM3GGJowoWuSJnP_jl2iW0p7k4pxqWk7QboHrarkp6rGDBr_AGG2Lt7F3kFIfsc-9jdAEN4TuHa_B_mDV2waHDu8ghQa6IeSj5RjaJi_TFbrwtk0w-8Upen18qFfroto8Pa8WVeGYlkNhJTAx16SRjLs5pd4Bk56V3gvBtedeM2tLb4Xjjrw5pZUGJS0oUBSc1HyKbk5_D7H_HCENZt-PscuWhpWKCMW5OKpuTyoX-5QieHOI4cPGL0OJOcZm_mLj35BsXmQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Almutairi, Khalid</creator><creator>Algarni, Salem</creator><creator>Alqahtani, Talal</creator><creator>Moayedi, Hossein</creator><creator>Mosavi, Amir</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0745-6487</orcidid><orcidid>https://orcid.org/0000-0003-4842-0613</orcidid><orcidid>https://orcid.org/0000-0003-1164-7777</orcidid><orcidid>https://orcid.org/0000-0002-8722-2882</orcidid></search><sort><creationdate>20220501</creationdate><title>A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings</title><author>Almutairi, Khalid ; Algarni, Salem ; Alqahtani, Talal ; Moayedi, Hossein ; Mosavi, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a5e24890d523c811fce25f26ff4439f3f92aa6fa4c3c0bc7979e75ae7e71ec593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Buildings</topic><topic>Computer applications</topic><topic>Data science</topic><topic>Efficiency</topic><topic>Energy efficiency</topic><topic>Energy modeling</topic><topic>Heating load</topic><topic>HVAC</topic><topic>Load</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Microprocessors</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Residential areas</topic><topic>Residential buildings</topic><topic>Sensitivity analysis</topic><topic>Sustainability</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almutairi, Khalid</creatorcontrib><creatorcontrib>Algarni, Salem</creatorcontrib><creatorcontrib>Alqahtani, Talal</creatorcontrib><creatorcontrib>Moayedi, Hossein</creatorcontrib><creatorcontrib>Mosavi, Amir</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almutairi, Khalid</au><au>Algarni, Salem</au><au>Alqahtani, Talal</au><au>Moayedi, Hossein</au><au>Mosavi, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings</atitle><jtitle>Sustainability</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>14</volume><issue>10</issue><spage>5924</spage><pages>5924-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Recent studies have witnessed remarkable merits of metaheuristic algorithms in optimization problems. Due to the significance of the early analysis of the thermal load in energy-efficient buildings, this work introduces and compares four novel optimizer techniques—the firefly algorithm (FA), optics-inspired optimization (OIO), shuffled complex evolution (SCE), and teaching–learning-based optimization (TLBO)—for an accurate prediction of the heating load (HL). The models are applied to a multilayer perceptron (MLP) neural network to surmount its computational shortcomings. The models are fed by a literature-based dataset obtained for residential buildings. The results revealed that all models used are capable of properly analyzing and predicting the HL pattern. A comparison between them, however, showed that the TLBO-MLP with the coefficients of determination 0.9610 vs. 0.9438, 0.9373, and 0.9556 (respectively, for FA-MLP, OIO-MLP, and SCE-MLP) and the root mean square error of 2.1103 vs. 2.5456, 2.7099, and 2.2774 presents the most reliable approximation of the HL. It also surpassed several methods used in previous studies. Thus, the developed TLBO-MLP can be a beneficial model for subsequent practical applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14105924</doi><orcidid>https://orcid.org/0000-0002-0745-6487</orcidid><orcidid>https://orcid.org/0000-0003-4842-0613</orcidid><orcidid>https://orcid.org/0000-0003-1164-7777</orcidid><orcidid>https://orcid.org/0000-0002-8722-2882</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2022-05, Vol.14 (10), p.5924 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2670473349 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Buildings Computer applications Data science Efficiency Energy efficiency Energy modeling Heating load HVAC Load Machine learning Methods Microprocessors Multilayer perceptrons Neural networks Optimization Optimization techniques Residential areas Residential buildings Sensitivity analysis Sustainability Thermal analysis |
title | A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20TLBO-Tuned%20Neural%20Processor%20for%20Predicting%20Heating%20Load%20in%20Residential%20Buildings&rft.jtitle=Sustainability&rft.au=Almutairi,%20Khalid&rft.date=2022-05-01&rft.volume=14&rft.issue=10&rft.spage=5924&rft.pages=5924-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14105924&rft_dat=%3Cproquest_cross%3E2670473349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670473349&rft_id=info:pmid/&rfr_iscdi=true |